Tính f(x)=\(\int e^2dx\), trong đó e là hằng số và e\(\approx\)2,718
A. f(x)= \(\dfrac{e^2x^2}{2}+C\)
B. f(x) =\(\dfrac{e^3}{3}+C\)
C. f(x) = e\(^2\)x+C
D. f(x) = 2ex + C
Cho hàm số f(x) thỏa mãn: xf'(x).lnx + f(x) = 2x2, ∀x ∈ (1;+∞) và f(e) = e2. Tính tích phân I=\(\int\limits^{e^2}_e\dfrac{x}{f\left(x\right)}dx\)
Cách làm cơ bản của dạng này:
Giải phương trình \(4x^2+12x\sqrt{x+1}=27\left(x+1\right)\) trên R, ta được nghiệm x = a \(x=\dfrac{b-c\sqrt{d}}{e}\) trong đó a, b, c, d, e là các số tự nhiên và \(\dfrac{b}{e}\) tối giản. Khi đó giá trị biểu thức: F = a+b-c+d-e
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=y\ge0\)
\(\Rightarrow4x^2+12xy=27y^2\)
\(\Leftrightarrow\left(2x-3y\right)\left(2x+9y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3y=2x\\9y=-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x+1}=2x\left(x\ge0\right)\\9\sqrt{x+1}=-2x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}9\left(x+1\right)=4x^2\left(x\ge0\right)\\81\left(x+1\right)=4x^2\left(x\le0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{81-9\sqrt{97}}{8}\end{matrix}\right.\)
cho hàm f(x) có đạo hàm trên R sao cho f(x)'>0 với mọi x. Biết e\(\approx\)2,71. Mệnh đề nào đúng ?
a. f(e)+f(pi)<f(3)+f(4)
b. f(e)+f(pi)<2.f(2)
c.f(e)-f(pi)>=0
d.f(1)+f(2)=2.f(3)
Tính các nguyên hàm.
a)\(\int\dfrac{2dx}{x^2-5x}=A\ln\left|x\right|+B\ln\left|x-5\right|+C\) . Tìm 2A-3B.
b)\(\int\dfrac{x^3-1}{x+1}\)dx=\(Ax^3-Bx^2+x+E\ln\left|x+1\right|+C\).Tính A-B+E
a) \(\int\dfrac{2dx}{x^2-5x}=\int\left(\dfrac{-2}{5x}+\dfrac{2}{5\left(x-5\right)}\right)dx=-\dfrac{2}{5}ln\left|x\right|+\dfrac{2}{5}ln\left|x-5\right|+C\)
\(\Rightarrow A=-\dfrac{2}{5};B=\dfrac{2}{5}\Rightarrow2A-3B=-2\)
b) \(\int\dfrac{x^3-1}{x+1}dx=\int\dfrac{x^3+1-2}{x+1}dx=\int\left(x^2-x+1-\dfrac{2}{x+1}\right)dx=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2+x-2ln\left|x+1\right|+C\)
\(\Rightarrow A=\dfrac{1}{3};B=\dfrac{1}{2};E=-2\Rightarrow A-B+E=-\dfrac{13}{6}\)
Khai triển các hằng đẳng thức sau:
a) (3x-2)2 b) (\(\dfrac{x}{3}\)+y3)2 c) 9x2 -225
d) (2x-3y)3 e) (2x2+\(\dfrac{3}{2}\))3 f) (-2xy2+\(\dfrac{1}{2}\)x3y)3
Giải chi tiết giúp mình nha.Cảm ơn
a) \(\left(3x-2\right)^2=\left(3x\right)^2-2.3x.2+2^2=9x^2-12x+4\)
b) \(\left(\dfrac{x}{3}+y^3\right)^2=\left(\dfrac{x}{3}\right)^2+2\dfrac{x}{3}y^3+\left(y^3\right)^2=\dfrac{x^2}{9}+\dfrac{2}{3}xy^3+y^6\)
c) \(9x^2-225=\left(3x\right)^2-\left(15\right)^2=\left(3x-15\right)\left(3x+15\right)\)
d) \(\left(2x-3y\right)^3=\left(2x\right)^3-3\left(2x\right)^23y+3.2x\left(3y\right)^2-\left(3y\right)^3=8x^3-3.4x^2.3y+6x.9y^2-27y^3=8x^3-36x^2y+54xy^2-27y^3\)
e) \(\left(2x^2+\dfrac{3}{2}\right)^3=\left(2x^2\right)^3+3\left(2x^2\right)^2\dfrac{3}{2}+3.2x^2\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^3=8x^6+3.4x^4.\dfrac{3}{2}+6x^2.\dfrac{9}{4}+\dfrac{27}{8}=8x^6+18x^4+\dfrac{27}{2}x^2+\dfrac{27}{8}\)
f) \(\left(-2xy^2+\dfrac{1}{2}x^3y\right)^3=\left(-2xy^2\right)+3\left(-2xy^2\right)^2\dfrac{1}{2}x^3y+3\left(-2xy^2\right)\left(\dfrac{1}{2}x^3y\right)^2+\left(\dfrac{1}{2}x^3y\right)^3=-8x^3y^6+3.4x^2y^4.\dfrac{1}{2}x^3y-6xy^2.\dfrac{1}{4}x^6y^2+\dfrac{1}{8}x^9y^3=-8x^3y^6+6x^5y^5-\dfrac{3}{2}x^7y^4+\dfrac{1}{8}x^9y^3\)
bài tập
Cho phân thức
E=\(\dfrac{x^2+6x+9}{X^3+3x^2-27x+27}.\left[\dfrac{x^2-9}{x^2+6x+9}+\dfrac{2}{3x}:\left(\dfrac{1}{x}+\dfrac{1}{3}\right)^2\right]\)
F=\(\dfrac{3+x}{3-x}.\dfrac{x^2-6x+9}{9x^2}\left(\dfrac{3}{3-x}-\dfrac{9}{27+x^3}.\dfrac{x^2-3x+9}{3-x}\right)\)
b)tìm x để |\(\dfrac{E}{F}\)|=9
tìm x để \(\dfrac{E}{F}\)=2018
d) tìm x thuộc Z để \(\dfrac{E}{F}\) thuộc Z
e) Tính gtri để \(\dfrac{E}{F}\) khi |x-1|=2018
jup mk vsssssssssssssssssssssssssss
a) rút gọn E và F
a) \(\int sin2x.cosxdx\)
b) \(\int tanxdx\)
c) \(\int\dfrac{sinx}{1+3cosx}dx\)
d) \(\int sin^3xdx\)
e) \(\int sin^2xdx\)
f) \(\int cos^23x\)
g) \(f\left(x\right)=\dfrac{1}{sin^2x.cos^2x}\)
h) \(f\left(x\right)=\dfrac{cos2x}{sin^2x.cos^2x}\)
i) \(\int2sin3x.cos2xdx\)
j) \(\int e^x\left(2+\dfrac{e^{-x}}{cos^2x}\right)dx\)
\(a,\int sin2x.cosxdx=\int\dfrac{1}{2}\left[sin3x+sinx\right]dx=\dfrac{1}{2}\int sin3xdx+\dfrac{1}{2}\int sinxdx=\dfrac{-1}{6}cos3x-\dfrac{1}{2}cosx\)
phần a bạn thêm +C vào đáp án nhé
\(i,\int2sinx3x.cos2xdx=2\int\dfrac{1}{2}\left(sin5x+sinx\right)dx=\int sin5xdx+\int sinxdx=-\dfrac{1}{5}cos5x-cosx+C\)
\(g,\int\dfrac{1}{sin^2x.cos^2x}=\int\dfrac{sin^2x+cos^2x}{sin^2x.cos^2x}=\int\dfrac{1}{cos^2x}dx+\int\dfrac{1}{sin^2x}dx=tanx-cotx+C\)
Tìm nguyên hàm của các hàm số sau :
a) \(f\left(x\right)=\dfrac{x+\sqrt{x}+1}{\sqrt[3]{x}}\)
b) \(f\left(x\right)=\dfrac{2^x-1}{e^x}\)
c) \(f\left(x\right)=\dfrac{1}{\sin^2x.\cos^2x}\)
d) \(f\left(x\right)=\sin5x.\cos3x\)
e) \(f\left(x\right)=\tan^2x\)
g) \(f\left(x\right)=e^{3-2x}\)
h) \(f\left(x\right)=\dfrac{1}{\left(1+x\right)\left(1-2x\right)}\)
a) Điều kiện x>0. Thực hiện chia tử cho mẫu ta được:
f(x) = = =
∫f(x)dx = ∫()dx = +C
b) Ta có f(x) = = -e-x
; do đó nguyên hàm của f(x) là:
F(x)= == + C
c) Ta có f(x) =
hoặc f(x) =
Do đó nguyên hàm của f(x) là F(x)= -2cot2x + C
d) Áp dụng công thức biến tích thành tổng:
f(x) =sin5xcos3x = (sin8x +sin2x).
Vậy nguyên hàm của hàm số f(x) là F(x) = -(cos8x + cos2x) +C
e) ta có
vậy nguyên hàm của hàm số f(x) là F(x) = tanx - x + C
g) Ta có ∫e3-2xdx= -∫e3-2xd(3-2x)= -e3-2x +C
h) Ta có :
= =
a. (x+1) (x-2) e. (3x+1)(x+\(\dfrac{1}{2}\))
b. (2x-3) (x-4) f. (x\(^3\)-2x+6)(5-\(\dfrac{2}{3}\)xy)
c. (x-1)(x+3)(x-2)
d. (x-5)(x+\(\dfrac{1}{2}\))
a) \(=x^2-2x+x-2=x^2-x-2\)
b) \(=2x^2-8x-3x+12=2x^2-11x+12\)
c) \(=\left(x^2+2x-3\right)\left(x-2\right)=x^3-2x^2+2x^2-4x-3x+6=x^3-7x+6\)
d) \(=x^2+\dfrac{1}{2}x-5x-\dfrac{5}{2}=x^2-\dfrac{9}{2}x-\dfrac{5}{2}\)
e) \(=3x^2+\dfrac{3}{2}x+x+\dfrac{1}{2}=3x^2+\dfrac{5}{2}x+\dfrac{1}{2}\)
f) \(=5x^3-\dfrac{2}{3}x^4y-10x+\dfrac{4}{3}x^2y+30-4xy\)
a) x^2 - x - 2
b) 2x^2 - 11x + 12
c) x^3 - 7x + 6
d) x^2 - 9x/2 - 5/2
e) 3x^2 + 5x/2 + 3/2
f) 5x^3 - 2/3.x^4.y - 10x + 4/3.x^2.y - 4xy + 30
Mình đã trả lời trong bài viết 54 phút trước của bạn rồi mà nhỉ?