Bài 4: Ôn tập chương nguyên hàm, tích phân và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ngô thị kiều trang
Xem chi tiết
Nguyễn Huy Tú
25 tháng 7 2017 lúc 10:25

\(\left(3x+1\right)^2=3x+1\)

\(\Leftrightarrow\left(3x+1\right)^2-\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(3x+1-1\right)=0\)

\(\Leftrightarrow3x\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)

mai công chúa
Xem chi tiết
mai công chúa
13 tháng 3 2018 lúc 22:31

helf me

NGUYỄN NGỌC CHI
27 tháng 9 2021 lúc 20:36

chịu ko bt

Khách vãng lai đã xóa
Duy Tấn
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 6 2022 lúc 18:35

Câu 2: B

Câu 3: A

An Sơ Hạ
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2021 lúc 17:47

1.

\(V=\pi\int\limits^1_0x^6dx=\dfrac{\pi x^7}{7}|^1_0=\dfrac{\pi}{7}\)

2.

\(F\left(x\right)=\int sin2xdx=-\dfrac{1}{2}cos2x+C\)

\(f\left(\dfrac{\pi}{4}\right)=1\Leftrightarrow-\dfrac{1}{2}cos\dfrac{\pi}{2}+C=1\Rightarrow C=1\)

\(\Rightarrow F\left(x\right)=-\dfrac{1}{2}cos2x+1\Rightarrow F\left(\dfrac{\pi}{6}\right)=\dfrac{3}{4}\)

An Sơ Hạ
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 3 2021 lúc 16:23

\(\int\limits^1_0\dfrac{xdx}{\left(x+2\right)^2}=\int\limits^1_0\dfrac{1}{x+2}dx-\int\limits^1_0\dfrac{2}{\left(x+2\right)^2}dx=ln\left(x+2\right)|^1_0+\dfrac{2}{x+2}|^1_0=ln3-ln2-\dfrac{1}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{3}\\b=-1\\c=1\end{matrix}\right.\)

An Sơ Hạ
Xem chi tiết
Vuy năm bờ xuy
28 tháng 5 2021 lúc 18:02

undefinedChúc bạn học tốt

Minh Nguyệt
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 11 2021 lúc 22:56

Khi gặp dạng này, ý tưởng là sẽ tìm 1 hàm u(x) sao cho:

\(\int\limits^b_a\left[f'\left(x\right)-u\left(x\right)\right]^2dx=0\) (1)

\(\Rightarrow f'\left(x\right)-u\left(x\right)=0\Rightarrow f'\left(x\right)=u\left(x\right)\)

Khai triển (1), đề cho sẵn \(\left[f'\left(x\right)\right]^2\)  nên đại lượng \(2u\left(x\right).f'\left(x\right)\) và hàm \(u\left(x\right)\) sẽ được suy ra từ việc tích phân từng phần \(\int\limits f\left(x\right)dx\). Cụ thể:

Xét \(I=\dfrac{2}{3}=\int\limits^2_0f\left(x\right)dx\)  

Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=x\end{matrix}\right.\)

\(\Rightarrow I=x.f\left(x\right)|^2_0-\int\limits^2_0xf'\left(x\right)dx=2-\int\limits^2_0xf'\left(x\right)dx\)

\(\Rightarrow\int\limits^2_0xf'\left(x\right)dx=2-\dfrac{2}{3}=\dfrac{4}{3}\) (2)

(Vậy đến đây hàm \(u\left(x\right)\) được xác định là dạng \(u\left(x\right)=k.x\)

Để tìm cụ thể giá trị k:

Từ (1) ta suy luận tiếp:

\(\int\limits^2_0\left[f'\left(x\right)-kx\right]^2dx=0\Leftrightarrow\int\limits^2_0\left[f'\left(x\right)\right]^2-2k\int\limits^2_0x.f'\left(x\right)dx+\int\limits^2_0k^2x^2dx=0\)

\(\Leftrightarrow\dfrac{2}{3}-2k.\dfrac{4}{3}+\dfrac{8}{3}k^2=0\) do \(\int\limits^2_0x^2dx=\dfrac{8}{3}\)

\(\Rightarrow k=\dfrac{1}{2}\) 

\(\Rightarrow u\left(x\right)=\dfrac{1}{2}x\) coi như xong bài toán)

Do đó ta có:

\(\int\limits^2_0\left[f'\left(x\right)\right]^2-\int\limits^2_0xf'\left(x\right)+\dfrac{1}{4}\int\limits^2_0x^2dx=\dfrac{2}{3}-\dfrac{4}{3}+\dfrac{1}{4}.\dfrac{8}{3}=0\)

\(\Rightarrow\int\limits^2_0\left[f'\left(x\right)-\dfrac{1}{2}x\right]^2dx=0\)

\(\Rightarrow f'\left(x\right)-\dfrac{1}{2}x=0\)

\(\Rightarrow f'\left(x\right)=\dfrac{1}{2}x\Rightarrow f\left(x\right)=\dfrac{1}{4}x^2+C\)

Thay \(x=2\Rightarrow1=1+C\Rightarrow C=0\)

\(\Rightarrow f\left(x\right)=\dfrac{1}{4}x^2\)

Minh Nguyệt
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 11 2021 lúc 22:30

\(\Leftrightarrow\dfrac{f'\left(x\right)}{f\left(x\right)}+2x=lnx\Rightarrow\dfrac{f'\left(x\right)}{f\left(x\right)}=lnx-2x\)

Lấy nguyên hàm 2 vế:

\(\Rightarrow\int\dfrac{f'\left(x\right)}{f\left(x\right)}dx=\int\left(lnx-2x\right)dx\)

\(\Rightarrow ln\left|f\left(x\right)\right|=x\left(lnx-1\right)-x^2+C\)

Thay \(x=1\)

\(\Rightarrow ln\left|f\left(1\right)\right|=-2+C\Rightarrow C=2\)

\(\Rightarrow ln\left|f\left(x\right)\right|=x\left(lnx-1\right)-x^2+2\)

\(\Rightarrow\left|f\left(x\right)\right|=e^{x\left(lnx-1\right)-x^2+2}\)

\(\Rightarrow\left|f\left(2\right)\right|\)