Nội dung lý thuyết
Các phiên bản khác• Diện tích hình phẳng giới hạn bởi đồ thị \(y=f\left(x\right)\), trục Ox và hai đường thẳng \(x=a;x=b\) là
\(S=\int^b_a\left|f\left(x\right)\right|dx\)
• Diện tích hình phẳng giới hạn bởi đồ thị \(y=f\left(x\right)\), \(y=g\left(x\right)\) và hai đường thẳng \(x=a;x=b\) là
\(S=\int\limits^b_a\left|f\left(x\right)-g\left(x\right)\right|dx\)
• Diện tích hình phẳng giới hạn bởi đồ thị x = f(y), x = g(y) và hai đường thẳng \(y=a;y=b\) là
\(S=\int^b_a\left|f\left(y\right)-g\left(y\right)\right|dy\)
Ví du: Tính diện tích hình phẳng giới hạn bởi hai đường cong \(y=x^3-x\) và \(y=x-x^2\)
Giải: Ta xét hiệu hai hàm \(f_1\left(x\right)=x^3-x\) và \(f_2\left(x\right)=x-x^2\) là:
\(f_1\left(x\right)-f_2\left(x\right)=x^3+x^2-2x=x\left(x^2+x-2\right)=x\left(x-1\right)\left(x+2\right)\)
Ta có \(f_1\left(x\right)-f_2\left(x\right)\) bằng 0 tại 3 điểm có hoành độ là -2; 0; 1. Vậy diện tích hình giới hạn bởi hai đồ thị là:
\(S=\int\limits^1_{-2}\left|x^3+x^2-2x\right|\text{d}x=\left|\int\limits^0_{-2}\left(x^3+x^2-2x\right)\text{d}x\right|+\left|\int\limits^1_0\left(x^3+x^2-2x\right)\text{d}x\right|\)
\(=\left|\left(\frac{x^4}{4}+\frac{x^3}{3}-x^2\right)|^0_{-2}\right|+\left|\left(\frac{x^4}{4}+\frac{x^3}{3}-x^2\right)|^1_0\right|\)
\(=\frac{8}{3}+\frac{5}{12}=\frac{37}{12}\)
Một vật thể \(\Omega\) giới hạn bởi hai mặt phẳng (P) và (Q) vuông góc với trục Ox lần lượt tại x =a , x = b ( a < b). Một mặt phẳng tùy ý vuông góc với Ox tại hoành độ x ( a < x < b) và cắt \(\Omega\) theo thiết diện S(x) (hàm phụ thuộc vào hoành độ x) và là hàm liên tục theo biến x trên [a, b]. Khi đó thể tích của \(\Omega\) là (thừa nhận):
\(V=\int\limits^b_aS\left(x\right)\text{d}x\)
Ví dụ: Tính thể tích hình lăng trụ biết diện tích đáy là B và chiều cao h (xem hình vẽ)
Áp dụng công thức ở trên:
\(V=\int\limits^h_0S\left(x\right)\text{d}x=\int\limits^h_0B\text{d}x=B.x|^h_0=B.h\)
a) Khối chóp
Tính thể tích hình chóp có diện tích đáy B và chiều cao h (xem hình vẽ dưới)
Ta có thiết diện và đáy tỉ lệ với x/h => Diện tích thiết diện và diện tích đáy tỉ lệ với (x/h)2 (do diện tích bằng tích hai độ dài).
Hay là: \(\frac{S\left(x\right)}{B}=\frac{x^2}{h^2}\) => \(S\left(x\right)=\frac{B.x^2}{h^2}\)
Theo công thức tính thể tích:
\(V=\int\limits^h_0S\left(x\right)\text{d}x=\int\limits^h_0\frac{B.x^2}{h^2}\text{d}x=\frac{B}{h^2}.\frac{x^3}{3}|^h_0=\frac{B.h}{3}\)
b) Khối chóp cụt:
Thể tích khối chóp cụt có diện tích đáy dưới là \(B_1\) , diện tích đáy trên là \(B_2\) và chiều cao là h:
\(V=\int\limits^{h_1}_{h_2}\frac{B_1x^2}{h_1^2}\text{d}x=\frac{B_1}{h_1^2}.\frac{x^3}{3}|^{h_1}_{h_2}=\frac{B_1}{3h_1^2}\left(h_1^3-h_2^3\right)\)
\(=\frac{B_1\left(h_1-h_2\right)}{3}\frac{\left(h_1^2+h_1h_2+h_2^2\right)}{h_1^2}\)
Thay \(h_1-h_2=h\) và \(\left(\frac{h_2}{h_1}\right)^2=\frac{B_2}{B_1}\) ta có:
\(V=\frac{h}{3}\left(B_1+\sqrt{B_1B_2}+B_2\right)\)
Chú ý: có thể tích thể tích khối chóp cụt bằng hiệu hai thể tích khối chóp to (đáy B1) và khối chóp bé (đáy B2) cũng ra được công thức trên.
• Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left(x\right)\), trục hoành và hai đường thẳng \(x=a;x=b\) quanh trục Ox là
\(V_x=\pi\int\limits^b_af^2\left(x\right)dx\) (vì thiết diện là hình tròn bán kính \(f\left(x\right)\))
• Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left(x\right)\), \(y=g\left(x\right)\) (trong đó \(f\left(x\right)\) và \(g\left(x\right)\) cùng dấu) và hai đường thẳng \(x=a;x=b\) quanh trục Ox là
\(V_x=\pi\int\limits^b_a\left|f^2\left(x\right)-g^2\left(x\right)\right|dx\) (vì thiết diện là hình miệng giếng giới hạn bởi hai đường tròn bán kính lần lượt là \(f\left(x\right)\) và \(g\left(x\right)\))
• Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi đồ thị hàm số \(x=g\left(y\right)\)), trục hoành và hai đường thẳng \(y=a;y=b\) quanh trục Oy là
\(V_y=\pi\int\limits^b_ag^2\left(y\right)dy\)
Ví dụ: Cho hình phẳng giới hạn bởi đường cong \(y=\sin x\), trục hoành và hai đường thẳng \(x=0;x=\pi\). Hãy tính thể tích của khối tròn xoay khi quay hình này quanh trục Ox.
Giải: Thể tích của khối tròn xoay là:
\(V=\pi\int\limits^{\pi}_0\sin^2x\text{d}x\)
\(=\pi\int\limits^{\pi}_0\frac{1}{2}\left(1-\cos2x\right)\text{d}x=\frac{\pi}{2}\left(x-\frac{1}{2}\sin2x\right)|^{\pi}_0=\frac{\pi^2}{2}\)
Ví dụ 1: (Hai Bà Trưng-Huế 2015 L3)
Tính diện tích hình phẳng giới hạn bởi \(x=\ln 3;x=\ln 8;y=0;y=\sqrt{e^x+1}\).
ĐS: \(S=2+\ln 3-\ln 2\) (đvdt)
Ví dụ 4: (Quỳnh Lưu 3-Nghệ An 2015) Tính diện tích hình phẳng giới hạn bởi \(y=\ln x; y=0;x=e\).
ĐS: S=1 (đvdt)
Ví dụ 5: (Lê Xoay-Vĩnh Phúc 2015 L4) Tính diện tích hình phẳng giới hạn bởi \(y=x^3+x^2-2x\) và trục hoành.
ĐS: \(S=\dfrac{37}{12}\) (đvdt)
Ví dụ 6: Tính thể tích khối tròn xoay tạo thành do hình phẳng \(H=\{y=x\ln x; y=0; x=1; x=e\}\) quay quanh Ox.
ĐS: \(V=\dfrac{\pi}{27}(5e^3-3)\) (đvtt)
TÀI LIỆU THAM KHẢO
Ứng dụng tích phân để tính diện tích, thể tích