-(1)/(x^(2))
Chúc bạn học tốt , tick cho mình nha
-(1)/(x^(2))
Chúc bạn học tốt , tick cho mình nha
Câu 1 : Tính thể tích vật thể tròn xoay khi quay hình phẳng (H) giới hạn bởi các đường y = x3 , y = 0, x=0, x=1 quanh trục hoành
Câu 2 : Biết F(x) là một nguyên hàm của hàm f(x) = sin2x và F(π/4) = 1. Tính F(π/6)
Tìm nguyên hàm của các hàm số sau :
a) \(f\left(x\right)=\left(x-1\right)\left(1-2x\right)\left(1-3x\right)\)
b) \(f\left(x\right)=\sin4x\cos^22x\)
c) \(f\left(x\right)=\dfrac{1}{1-x^2}\)
d) \(f\left(x\right)=\left(e^x-1\right)^3\)
a) Phát biểu định nghĩa nguyên hàm của hàm số \(f\left(x\right)\) trên một khoảng
b) Nêu phương pháp tính nguyên hàm từng phần. Cho ví dụ minh họa
Cho hàm số f(x) có đạo hàm liên tục trên đoạn \(\left[0;1\right]\) thỏa mãn f(1) = 1 và (f'(x)2 + 4(6x2 -1).f(x) = 40x6 - 44x4 + 32x2 - 4, mọi x thuộc \(\left[0;1\right]\). Giá trị f(\(\dfrac{1}{2}\)) bằng ?
Cho hàm số f(x) thỏa mãn f'(x) + 2x.f(x) = f(x).lnx với f(x)≠ 0, ∀x và f(1) =1. Khi đó \(\left|f\left(2\right)\right|\) bằng ?
Cho hàm số y = f(x) liên tục trên \(\left[0;2\right]\), thỏa mãn các điều kiện f(2) = 1 và \(\int\limits^2_0f\left(x\right)dx=\int\limits^2_0\left[f'\left(x\right)\right]^2dx=\dfrac{2}{3}\) Giá trị của f(1) bằng
Cho hàm số f(x) thỏa mãn: xf'(x).lnx + f(x) = 2x2, ∀x ∈ (1;+∞) và f(e) = e2. Tính tích phân I=\(\int\limits^{e^2}_e\dfrac{x}{f\left(x\right)}dx\)
a) Phát biểu định nghĩa tích phân của hàm số \(f\left(x\right)\) trên một đoạn
b) Nêu các tính chất của tích phân. Cho ví dụ minh họa
Tính các nguyên hàm sau :
a) \(\int\left(2x-3\right)\sqrt{x-3}dx\), đặt \(u=\sqrt{x-3}\)
b) \(\int\dfrac{x}{\left(1+x^2\right)^{\dfrac{3}{2}}}dx\) , đặt \(u=\sqrt{x^2+1}\)
c) \(\int\dfrac{e^x}{e^x+e^{-x}}dx\), đặt \(u=e^{2x}+1\)
d) \(\int\dfrac{1}{\sin x-\sin a}dx\)
e) \(\int\sqrt{x}\sin\sqrt{x}dx,\) đặt \(t=\sqrt{x}\)
g) \(\int x\ln\dfrac{x}{1+x}dx\)