\(\int\limits^2_1\dfrac{2x+1}{x^2+x}dx=\int\limits^2_1\dfrac{d\left(x^2+x\right)}{x^2+x}=ln\left(x^2+x\right)|^2_1=ln6-ln2=ln3\)
\(\Rightarrow\left\{{}\begin{matrix}a=0\\b=3\end{matrix}\right.\) \(\Rightarrow a^2+b^2=9\)
\(\int\limits^2_1\dfrac{2x+1}{x^2+x}dx=\int\limits^2_1\dfrac{d\left(x^2+x\right)}{x^2+x}=ln\left(x^2+x\right)|^2_1=ln6-ln2=ln3\)
\(\Rightarrow\left\{{}\begin{matrix}a=0\\b=3\end{matrix}\right.\) \(\Rightarrow a^2+b^2=9\)
Câu này làm như nào vậy ạ?
Đề bài: Tìm diện tích của hình phẳng giới hạn bởi hai đường cong có phương trình \(x-y^2=0\) và \(x+2y^2-12=0\).
Cho \(4xf\left(x\right)+3f\left(1-x\right)=\sqrt{1-x}\)
Tính
I = \(\int_0^1f\left(x\right)dx\)
Biết \(I = \int_{2}^{3}\dfrac{dx}{x^2+x} \) = aln3 + bln2, với ( a, b ϵ Z ). Tính tổng S = a + b
Cho hàm số f(x) thỏa mãn f'(x) + 2x.f(x) = f(x).lnx với f(x)≠ 0, ∀x và f(1) =1. Khi đó \(\left|f\left(2\right)\right|\) bằng ?
Cho hàm số f(x) thỏa mãn: xf'(x).lnx + f(x) = 2x2, ∀x ∈ (1;+∞) và f(e) = e2. Tính tích phân I=\(\int\limits^{e^2}_e\dfrac{x}{f\left(x\right)}dx\)
Cho hàm số y = f(x) liên tục trên \(\left[0;2\right]\), thỏa mãn các điều kiện f(2) = 1 và \(\int\limits^2_0f\left(x\right)dx=\int\limits^2_0\left[f'\left(x\right)\right]^2dx=\dfrac{2}{3}\) Giá trị của f(1) bằng
Cho hàm số f(x) có đạo hàm liên tục trên đoạn \(\left[0;1\right]\) thỏa mãn f(1) = 1 và (f'(x)2 + 4(6x2 -1).f(x) = 40x6 - 44x4 + 32x2 - 4, mọi x thuộc \(\left[0;1\right]\). Giá trị f(\(\dfrac{1}{2}\)) bằng ?
Tìm nguyên hàm của các hàm số sau :
a) \(f\left(x\right)=\left(x-1\right)\left(1-2x\right)\left(1-3x\right)\)
b) \(f\left(x\right)=\sin4x\cos^22x\)
c) \(f\left(x\right)=\dfrac{1}{1-x^2}\)
d) \(f\left(x\right)=\left(e^x-1\right)^3\)
(3x +1)2=3x+1