Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
Cho A= \(\dfrac{19n+1}{2n+3}\) . Tìm n để
a) A là phân số
b) Tìm n ϵ Z để A ϵ z
a: Để A là phân số thì 2n+3<>0
=>2n<>-3
=>\(n<>-\frac32\)
b: Để A là số nguyên thì 19n+1⋮2n+3
=>38n+2⋮2n+3
=>38n+57-55⋮2n+3
=>-55⋮2n+3
=>2n+3∈{1;-1;5;-5;11;-11;55;-55}
=>2n∈{-2;-4;2;-8;8;-14;52;-58}
=>n∈{-1;-2;1;-4;4;-7;26;-29}
Cho A =\(\dfrac{6n+42}{6n}\) với n ϵ Z và n ≠ 0. Tìm tất cả các số nguyên n sao cho A là số nguyên
Để A là số nguyên thi 6n+42⋮6n
6n⋮6n⇒42⋮6n
7⋮n
n∈Ư(7)={1;-1;7;-7}
Vậy n ∈ {1;-1;7;-7}
Bài 1
a) Cho C=\(\frac{n}{n-2}\) ( n ϵ Z ; n khác 2)
Tìm tất cả các số nguyên n để C là số nguyên
b) Cho D\(\frac{n}{n+13}\) ( n ϵ Z ; n khác -13) ( và cũng hỏi như ở câu a)
Bài 2
a) Cho E = \(\frac{3n+5}{n+7}\) ( n ϵ Z ; n khác -7) Tìm n ϵ Z để E là số nguyên
b) Cho F = \(\frac{2n+9}{n-5}\) ( n ϵ Z ; n khác 5) Tìm n ϵ Z để F là số nguyên
Bài 3
a) Cho G = \(\frac{n+10}{2n-8}\) ( n khác 4) Tìm số tự nhiên n để G là số nguyên
b) Cho H = \(\frac{n-1}{3n-6}\) ( n khác 2) Tìm n ϵ Z để H là số nguyên
Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)
Để n ϵ Z để phân số 2n+15/ n+1 là số nguyên
Ta có: \(\dfrac{2n+15}{n+1}=\dfrac{2n+2+13}{n+1}=\dfrac{2\left(n+1\right)+13}{n+1}=\dfrac{2\left(n+1\right)}{n+1}+\dfrac{13}{n+1}=2+\dfrac{13}{n+1}\)( ĐK : \(n\ne-1\))
Để \(\dfrac{2n+15}{n+1}\in Z\) thì \(13⋮n+1\) hay \(n+1\inƯ\left(13\right)=\left\{13;-13;1;-1\right\}\)
Ta có bảng sau
| n+1 | 13 | -13 | 1 | -1 |
| n | 12 | -14 | 0 | -2 |
Vậy để \(\dfrac{2n+15}{n+1}\) là số nguyên thì \(n\in\left\{12;-14;0;-2\right\}\)
Chúc bạn học tốt
Ta có:
2n + 15 = 2n + 2 + 13 = 2(n + 1) + 15
Để phân số đã cho là số nguyên thì n + 1 ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
⇒ n ∈ {-16; -6; -2; 0; 2; 4; 14}
Bài 1: CMR với n ϵ Z các phân số sau tối giản
a) \(\dfrac{n}{2n+1}\)
b) \(\dfrac{n+5}{n+6}\)
c) \(\dfrac{n+1}{2n+3}\)
d) \(\dfrac{3n+2}{5n+3}\)
e)\(\dfrac{1}{7n+1}\)
Các bạn giải chi tiết cho mình nhé. Thanks all !
a: Gọi d=ƯCLN(n;2n+1)
=>n⋮d và 2n+1⋮d
=>2n⋮d và 2n+1⋮d
=>2n+1-2n⋮d
=>1⋮d
=>d=1
=>ƯCLN(n;2n+1)=1
=>\(\frac{n}{2n+1}\) là phân số tối giản
b: Gọi d=ƯCLN(n+5;n+6)
=>n+5⋮d và n+6⋮d
=>n+6-n-5⋮d
=>1⋮d
=>d=1
=>ƯCLN(n+5;n+6)=1
=>\(\frac{n+5}{n+6}\) là phân số tối giản
c: Gọi d=ƯCLN(n+1;2n+3)
=>n+1⋮d và 2n+3⋮d
=>2n+2⋮d và 2n+3⋮d
=>2n+3-2n-2⋮d
=>1⋮d
=>d=1
=>ƯCLN(n+1;2n+3)=1
=>\(\frac{n+1}{2n+3}\) là phân số tối giản
d: Gọi d=ƯCLN(3n+2;5n+3)
=>3n+2⋮d và 5n+3⋮d
=>15n+10⋮d và 15n+9⋮d
=>15n+10-15n-9⋮d
=>1⋮d
=>d=1
=>ƯCLN(3n+2;5n+3)=1
=>\(\frac{3n+2}{5n+3}\) là phân số tối giản
Để n ϵ Z để phân số 2n+15/ n+1 là số nguyên
Giúp mik với, mik đang cần gấp:>
nhanh mik tick cho (owo)
\(\dfrac{2n+15}{n+1}\in Z\Rightarrow2n+15⋮n+1\)
\(\Rightarrow2n+15-2\left(n+1\right)⋮n+1\)
\(\Rightarrow13⋮n+1\)
\(\Rightarrow n+1=Ư\left(13\right)\)
\(\Rightarrow n+1=\left\{-13;-1;1;13\right\}\)
\(\Rightarrow n=\left\{-14;-2;0;12\right\}\)
Cách hai: Theo bezout ta có: \(\dfrac{2n+15}{n+1}\) \(\in\) Z ⇔ 2.(-1) + 15 ⋮ n +1
⇔ 13 ⋮ n +1 ⇒ n + 1 \(\in\) { -13; -1; 1; 13} ⇒ n \(\in\) { -14; -2; 0; 12}
Tìm n ϵ Z sao cho 2n - 3 chia hết n + 1
\(\frac{2n-3}{n+1}=\frac{n+1+n+1-5}{n+1}=\frac{-5}{n+1}\)
=\(\Rightarrow n+1\in\text{Ư}\left(-5\right)=\left\{1;5;-1;-5\right\}\)
\(\Leftrightarrow n+1=1\Rightarrow n=0\)
\(\Leftrightarrow n+1=5\Rightarrow n=4\)
\(\Leftrightarrow n+1=-1\Rightarrow n=-2\)
\(\Leftrightarrow n+1=-5\Rightarrow n=-6\)
Vậy: \(n\in\left\{0;4;-2;-6\right\}\)
B=\(\dfrac{3}{n+2}\) Tìm n ϵ Z để B là số nguyên.
Để B là số nguyên thì \(n+2\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{-1;-3;1;-5\right\}\)
`B = 3/(n+2) (n ne -2)`
Để `B in ZZ`
`=> n+2 in Ư(3)=(+-1;+-3)`
`@ n+2 =1 => n= -1`
`@ n +2 =-1 => n=-3`
`@ n+2 = 3 => n= 1`
`@ n+2 = -3 => n=-5`
Để n ϵ Z để phân số 2n+15/ n+1 là số nguyên
Giúp mik với, mik đang cần gấp:>
\(\dfrac{2n+15}{n+1}=\dfrac{2n+2+13}{n+1}=\dfrac{2\left(n+1\right)+13}{n+1}=\dfrac{2\left(n+1\right)}{n+1}+\dfrac{13}{n+1}=2+\dfrac{13}{n+1}\left(ĐKXĐ:n\ne-1\right)\)
Để \(\dfrac{2n+15}{n+1}\in Z\) thì \(13⋮n+1\) hay \(n+1\inƯ\left(13\right)\)
Xét bảng :
| Ư(13) | n+1 | n |
| 13 | 13 | 12 |
| -13 | -13 | -14 |
| 1 | 1 | 0 |
| -1 | -1 | -2 |
Vậy để 2n+15/n+1 là số nguyên thì \(n\in\left\{-14;-2;0;12\right\}\)