a: ĐKXĐ: n<>1
Để \(\frac{2n-1}{n-1}\) là số nguyên thì 2n-1⋮n-1
=>2n-2+1⋮n-1
=>1⋮n-1
=>n-1∈{1;-1}
=>n∈{2;0}
b: ĐKXĐ: n<>-1
Để \(\frac{3n+5}{n+1}\) là số nguyên thì 3n+5⋮n+1
=>3n+3+2⋮n+1
=>2⋮n+1
=>n+1∈{1;-1;2;-2}
=>n∈{0;-2;1;-3}
c: ĐKXĐ: n<>-3
Để \(\frac{4n-2}{n+3}\) là số nguyên thì 4n-2⋮n+3
=>4n+12-14⋮n+3
=>-14⋮n+3
=>n+3∈{1;-1;2;-2;7;-7;14;-14}
=>n∈{-2;-4;-1;-5;4;-10;11;-17}
d: ĐKXĐ: n<>-4/3
Để \(\frac{6n-4}{3n+4}\) là số nguyên thì 6n-4⋮3n+4
=>6n+8-12⋮3n+4
=>-12⋮3n+4
=>3n+4∈{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
=>3n∈{-3;-5;-2;-6;-1;-7;0;-8;2;-10;8;-16}
=>n∈{\(-1;-\frac53;-\frac23;-2;-\frac13;-\frac73;0;-\frac83;\frac23;-\frac{10}{3};\frac83;-\frac{16}{3}\) }
mà n là số nguyên
nên n∈{-1;-2;0}
e: ĐKXĐ: n<>1/2
Để \(\frac{n+3}{2n-1}\) là số nguyên thì n+3⋮2n-1
=>2n+6⋮2n-1
=>2n-1+7⋮2n-1
=>7⋮2n-1
=>2n-1∈{1;-1;7;-7}
=>2n∈{2;0;8;-6}
=>n∈{1;0;4;-3}
f: \(\frac{6n-4}{3n-2}=\frac{2\left(3n-2\right)}{3n-2}=2\) là số nguyên với mọi n nguyên
g: ĐKXĐ: n<>1/3
Để \(\frac{2n+3}{3n-1}\) là số nguyên thì 2n+3⋮3n-1
=>6n+9⋮3n-1
=>6n-2+11⋮3n-1
=>11⋮3n-1
=>3n-1∈{1;-1;11;-11}
=>3n∈{2;0;12;-10}
=>n∈{2/3;0;4;-10/3}
mà n nguyên
nên n∈{0;4}