\(\dfrac{3x+25}{144}=\dfrac{2y-169}{25}=\dfrac{z+144}{169}và3x+2y+z=169\)
Tìm x,y và z biết rằng 3x+2y+z=169 và \(\frac{3x+25}{144}=\frac{2y-169}{25}=\frac{z+144}{169}\)
\(\frac{3x+25}{144}=\frac{2y-169}{25}=\frac{z+144}{169}=\frac{3x+2y+z}{338}=\frac{169}{338}=\frac{1}{2}\)
\(\Rightarrow3x+25=\frac{1}{2}.144=72\)
\(\Leftrightarrow x=\frac{47}{3}\)
\(2y-169=\frac{1}{2}.25=\frac{25}{2}\)
\(\Leftrightarrow y=\frac{363}{4}\)
\(z+144=\frac{1}{2}.169=\frac{169}{2}\)
\(\Leftrightarrow z=\frac{-119}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{3x+25}{144}=\frac{2y-169}{25}=\frac{z+144}{169}=\frac{\left(3x+2y+z\right)+\left(25-169+144\right)}{144+25+169}=\frac{169+25-169+144}{144+25+169}=\)
\(\frac{1}{2}\)
Ta có
\(\frac{3x+25}{144}=\frac{1}{2}\Rightarrow6x+50=144\Rightarrow6x=94\Rightarrow x=\frac{47}{3}\)
\(\frac{2y-169}{25}=\frac{1}{2}\Rightarrow4y-338=25\Rightarrow4y=363\Rightarrow y=\frac{363}{4}\)
\(\frac{z+144}{169}=\frac{1}{2}\Rightarrow2z+288=169\Rightarrow2z=-119\Rightarrow z=\frac{-119}{2}\)
Bài 4: Thực hiện phép tính
a) \(\dfrac{9}{180}+\dfrac{36}{144}\)
b) \(\dfrac{28}{49}-\dfrac{15}{60}\)
c) \(\dfrac{26}{39}+\dfrac{65}{169}-\dfrac{3}{5}\)
a) \(\dfrac{3}{10}\)
b) \(\dfrac{9}{28}\)
c) \(\dfrac{88}{195}\)
tính
a, \(\sqrt{169}\) - \(\sqrt{225}\)
b \(\dfrac{\sqrt{144}}{9}\)
c \(\sqrt{18}\) \(\div\) \(\sqrt{2}\)
a: \(\sqrt{169}-\sqrt{225}\)
\(=\sqrt{13^2}-\sqrt{15^2}\)
=13-15
=-2
b: \(\dfrac{\sqrt{144}}{9}\)
\(=\dfrac{\sqrt{12^2}}{9}\)
\(=\dfrac{12}{9}=\dfrac{4}{3}\)
c: \(\sqrt{18}:\sqrt{2}=\sqrt{\dfrac{18}{2}}=\sqrt{9}=3\)
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}và3x^2-2y^2+z^2=5\)
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
⇒ \(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{25}\)
⇒ \(\dfrac{3x^2}{27}=\dfrac{2y^2}{32}=\dfrac{z^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{3x^2}{27}=\dfrac{2y^2}{32}=\dfrac{z^2}{25}=\dfrac{3x^2-2y^2+z^2}{27-32+25}=\dfrac{5}{20}=\dfrac{1}{4}\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{1}{4}.3=\dfrac{3}{4}\\y=\dfrac{1}{4}.4=1\\z=\dfrac{1}{4}.5=\dfrac{5}{4}\end{matrix}\right.\)
Áp dụng quy tắc khai phương một thương, hãy tính :
a) \(\sqrt{\dfrac{9}{169}}\)
b) \(\sqrt{\dfrac{25}{144}}\)
c) \(\sqrt{1\dfrac{9}{16}}\)
d) \(\sqrt{2\dfrac{7}{81}}\)
Áp dụng quy tắc khai phương một thương, hãy tính :
9169" id="MathJax-Element-1-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; font-size:18px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">9169−−−−√ = \(\sqrt{\dfrac{3^2}{13^2}}\) = \(\left|\dfrac{3}{13}\right|\) = \(\dfrac{3}{13}\)
25144" id="MathJax-Element-2-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; font-size:18px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">25144−−−−√ = \(\sqrt{\dfrac{5^2}{12^2}}\) = \(\left|\dfrac{5}{12}\right|\) = \(\dfrac{5}{12}\)
916" id="MathJax-Element-3-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; font-size:18px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">1916−−−−√ = \(\sqrt{\dfrac{25}{16}}\) = \(\sqrt{\dfrac{5^2}{4^2}}\) = \(\left|\dfrac{5}{4}\right|\) = \(\dfrac{5}{4}\)
781" id="MathJax-Element-4-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-table; float:none; font-size:18px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">2781−−−−√ = \(\sqrt{\dfrac{169}{81}}\) = \(\sqrt{\dfrac{13^2}{9^2}}\) = \(\left|\dfrac{13}{9}\right|\) = \(\dfrac{13}{9}\)
\(|\)2,5 - x\(|\) = 1,3
1,6 - \(|\)x - 0,2\(|\) = 0
13x = 169
\(\dfrac{-2\dfrac{ }{ }}{x}\) = \(\dfrac{-x}{\dfrac{8}{25}}\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
a) Ta có: \(\left|2.5-x\right|=1.3\)
\(\Leftrightarrow\left|x-2.5\right|=1.3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2.5=1.3\\x-2.5=-1.3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3.8\\x=-1.3+2.5=1.2\end{matrix}\right.\)
Vậy: \(x\in\left\{3.8;1.2\right\}\)
b) Ta có: \(1.6-\left|x-0.2\right|=0\)
\(\Leftrightarrow\left|x-0.2\right|=1.6\)
\(\Leftrightarrow\left[{}\begin{matrix}x-0.2=1.6\\x-0.2=-1.6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1.8\\x=-1.4\end{matrix}\right.\)
Vậy: \(x\in\left\{1.8;-1.4\right\}\)
c) Ta có: \(13^x=169\)
\(\Leftrightarrow13^x=13^2\)
\(\Leftrightarrow x=2\)
Vậy: x=2
d) Ta có: \(\dfrac{-2}{x}=\dfrac{-x}{\dfrac{8}{25}}\)
\(\Leftrightarrow\dfrac{2}{x}=\dfrac{x}{\dfrac{8}{25}}\)
\(\Leftrightarrow x^2=\dfrac{16}{25}\)
hay \(x\in\left\{\dfrac{4}{5};-\dfrac{4}{5}\right\}\)
Vậy: \(x\in\left\{\dfrac{4}{5};-\dfrac{4}{5}\right\}\)
\(|2,5-x|=1,3\)
\(\Rightarrow2,5-x=1,3\) hoặc -(2,5-x)=1,3
=>x=2,5-1,3 x-2,5=1,3
=>x=1,2 x=1,3+2,5=3,8
Vậy \(x\in\left\{1,2;3,8\right\}\)
\(1,6-|x-0,2|=0\Rightarrow|x-0,2|=1,6\)
=> x-0,2=1,6 hoặc -(x-0,2)=1,6
=>x=1,6+0,2 0,2-x=1,6
=>x=3,8 x=0,2-1,6=-1,4
Vậy \(x\in\left\{3,8;-1,4\right\}\)
\(13^x=169\Rightarrow13^x=13^2\Rightarrow x=2\)
\(\dfrac{-2}{x}=\dfrac{-x}{\dfrac{8}{25}}\Rightarrow-2\times\dfrac{8}{25}=-x\times x\Rightarrow\dfrac{-16}{25}=-x^2\Rightarrow\dfrac{16}{25}=x^2\Rightarrow x^2=\left(\dfrac{4}{5}\right)^2=\left(-\dfrac{4}{5}\right)^2\)
\(\Rightarrow x=\dfrac{4}{5}\) hoặc \(x=-\dfrac{4}{5}\)
Tìm x: \(\dfrac{148-x}{25}+\dfrac{169-x}{23}+\dfrac{186-x}{21}+\dfrac{199-x}{19}=10\)
148-x/25-1 + 169-x/23-2 + 186-x/21-3 + 199-x/19-4
123-x/25 + 123-x/23 + 123-x/21 + 123-x/19 =0
123-x=0 => x=123
\(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\)
\(\left(\frac{148-x}{25}-1\right)+\left(\frac{169-x}{23}-2\right)+\left(\frac{186-x}{21}-3\right)+\left(\frac{199-x}{19}-4\right)=0\)
=> \(\frac{123-x}{25}+\frac{123-x}{23}+\frac{123-x}{21}+\frac{123-x}{19}=0\)
=> \(\left(123-x\right)\left(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)=0\)
=> 123 - x = 0
=> x = 123
duongtiendung vế bên trái có thêm -1,-2,-3,-3 thì bên vế phải ,phải là 0+(-1)+(-2)+(-3)+(-4)
=-10 chứ = 0 sao đc
Tìm x biết
\(\dfrac{148-x}{25}+\dfrac{169-x}{23}+\dfrac{186-x}{21}+\dfrac{199-x}{19}\)=0
\(\dfrac{148-x}{25}\) + \(\dfrac{169-x}{23}\) + \(\dfrac{186-x}{21}\) +\(\dfrac{199-x}{19}\) =10
\(\dfrac{148-x}{25}+\dfrac{169-x}{23}+\dfrac{186-x}{21}+\dfrac{199-x}{19}=10\)
\(\Leftrightarrow\left(\dfrac{148-x}{25}-1\right)+\left(\dfrac{169-x}{23}-2\right)+\left(\dfrac{186-x}{21}-3\right)+\left(\dfrac{199-x}{19}-4\right)=0\)
\(\Leftrightarrow\dfrac{123-x}{25}+\dfrac{123-x}{23}+\dfrac{123-x}{21}+\dfrac{123-x}{19}=0\)
\(\Leftrightarrow\left(123-x\right)\left(\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}+\dfrac{1}{19}\right)=0\)
\(\Leftrightarrow123-x=0\Leftrightarrow x=123\)
Vậy x = 123