x/2=y3 và x.y =10
tìm x và y
cho mik hỏi với
Cho x-y=4 và x.y=5 tính B=x3 -y3+(x+y)2
\(B=x^3-y^3+\left(x+y\right)^2\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)+\left(x-y\right)^2+4xy\)
\(=4^3+3\cdot4\cdot5+4^2+4\cdot5\)
\(=160\)
\(\left(x+y\right)^2=\left(x-y\right)^2+4xy=4^2+4.5=36\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=4^3+3.5.4=124\)
\(\Rightarrow B=124+36=160\)
x:2=y:3 và x+y =10
tìm x và y
x:2=y:3->x/2=y/3
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
x/2=y/3=x+y/2+3=10/5=2
từ: x/2=2->x=2.2=4
y/3=2->y=2.3=6
vậy...
\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{10}{5}=2\) (theo tính chất củadãy tỉ số bằng nhau)
\(\Rightarrow x=4,y=6\)
Ta có: \(x:2=y:3\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=10
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{10}{5}=2\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=2\\\dfrac{y}{3}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)
Vậy: x=4; y=6
cho x+y=4 và x.y=3 tính x3+y3
\(x+y=4=>\left(x+y\right)^2=16\)
\(=>x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=4\left(x^2+2xy+y^2-3xy\right)=4\left[\left(x+y\right)^2-3.3\right]=4\left(16-9\right)=28\)
Lời giải:
Theo hằng đẳng thức đáng nhớ:
$x^3+y^3=(x+y)^3-3xy(x+y)=4^3-3.3.4=28$
Cho x+y=5 và x.y=4 . Hãy tính giá trị của biểu thức A=x3+y3
\(A=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=5^3-3.5.4=65\)
Cho (x;y) là nghiệm của hệ x+y=m+2 và x^2+y^2=-m^2+2m+10
Tìm gtln gtnn của P=xy-3(x+y)
Tính bằng cách hợp lí.
a)Tính 113-1
b)Tính giá trị biểu thức x3-y3 biết x-y=6 và x.y=20
a) \(11^3-1\)
\(=11^3-1^3\)
\(=\left(11-1\right)\left(11^2+11\cdot1+1^2\right)\)
\(=10\cdot\left(121+11+1\right)\)
\(=10\cdot\left(132+1\right)\)
\(=10\cdot133\)
\(=1330\)
b) Ta có:
\(x^3-y^3\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)\)
Thay \(x-y=6\) và \(xy=20\) ta có:
\(6^3+3\cdot20\cdot6=216+60\cdot6=216+360=576\)
a: 11^3-1=(11-1)(11^2+11+1)
=10*(121+12)
=10*133=1330
b: x^3-y^3=(x-y)^3+3xy(x-y)
=6^3+3*20*6
=216+360
=576
Cho x-y=1. Tìm GTNN của P=x3-y3-x.y
\(x-y=1\Leftrightarrow x=1+y\\ P=\left(x-y\right)\left(x^2+xy+y^2\right)-xy\\ P=x^2+xy+y^2-xy\\ P=x^2+y^2=y^2+2y+1+y^2\\ P=2\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(y+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Dấu \("="\Leftrightarrow y=-\dfrac{1}{2}\Leftrightarrow x=1-\dfrac{1}{2}=\dfrac{1}{2}\)
x3 - y3 - xy
= (x - y)(x2 + xy + y2) - xy
Thay x - y = 1 vào, ta đc:
= x2 + xy + y2 - xy
= x2 + y2
Ta có: x2 + y2 có giá trị nhỏ nhất khi \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
a) x.y = -9 và x< y
b)x.y = 7 và x<y
c)x.y = -11 và x>y
a)(x+1)(y-2)=-3
b)(x-3)(y+1)=7
c)(x+5)(y+7)=-5
a: \(\left(x,y\right)\in\left\{\left(-9;1\right);\left(-1;9\right);\left(-3;3\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(1;7\right);\left(-7;-1\right)\right\}\)
c: \(\left(x,y\right)\in\left\{\left(11;-1\right);\left(-11;1\right)\right\}\)
a: (x,y)∈{(−9;1);(−1;9);(−3;3)}(x,y)∈{(−9;1);(−1;9);(−3;3)}
b: (x,y)∈{(1;7);(−7;−1)}(x,y)∈{(1;7);(−7;−1)}
c: (x,y)∈{(11;−1);(−11;1)}
a) x.y = -9 và x< y
b)x.y = 7 và x<y
c)x.y = -11 và x>y
a)(x+1)(y-2)=-3
b)(x-3)(y+1)=7
c)(x+5)(y+7)=-5
a: \(\left(x,y\right)\in\left\{\left(-9;1\right);\left(-1;9\right);\left(-3;3\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(1;7\right);\left(-7;-1\right)\right\}\)
c: \(\left(x,y\right)\in\left\{\left(11;-1\right);\left(-1;11\right)\right\}\)