Cho sinx = 0,6 tính giá trị biểu thức M = 6cos^2x - 4sin^2x
Cho \(sinx+cosx=m\) Tính theo m giá trị biểu thức
\(a,A=sinx.cosx\\ b,B=\left|sinx-cosx\right|\\ c,C=sin^4x+cos^4x\\ d,D=tan^2x+cot^2x\)
a: A=(sinx+cosx)^2-1=m^2-1
b: B=căn (sinx+cosx)^2-4sinxcosx=căn m^2-4(m^2-1)=căn -3m^2+4
c: C=(sin^2x+cos^2x)^2-2(sinx*cosx)^2=1-2m^2
D) tan2x + cot2x
= (1 - 2)(-sin2x/2 + 1/2)2):(-sin2x/2 + 1/2)2
= (1 - 2sin2x)/sin2x.cos2x
= (m2 - 3)/2
Tính giá trị biểu thức A biết \(cosx=0,5;A=\dfrac{cosx+2sin^2x}{cos^2x-sinx}\)
cos2x + sin2x=1
=>sin2x=1-cos2x=0.75
=>sinx=\(\pm\)\(\sqrt{3}\)/2
A= \(\dfrac{0,5+2.0,75}{0,5^2\pm\dfrac{\sqrt{3}}{2}}\)= \(\dfrac{-8\pm16\sqrt{3}}{11}\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức sau:
A=\(3sin^2x+6cos^2x\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức sau:
A=\(3\sin^2x+6cos^2x\)
a, Cho góc nhọn x có sinx =3/5.Tính giá trị của biểu thức 5cosx+3cosx
b, Cho góc nhọn x.Chứng minh 1–2sin^2x/cossx–sinx
cho x là góc nhọn.Giá trị biểu thức \(\sqrt{sin^4x+4cos^2x}+\sqrt{cos^4x+4sin^2x}\) bằng?
\(0< =sin^2x< =1\)
=>\(-2< =sin^2x-2< =-1\)
=>\(sin^2x-2< 0\)
\(0< =cos^2x< =1\)
=>\(-2< =cos^2x-2< =-1\)
\(\Leftrightarrow cos^2x-2< 0\)
\(\sqrt{sin^4x+4cos^2x}+\sqrt{cos^4x+4\cdot sin^2x}\)
\(=\sqrt{sin^4x+4\left(1-sin^2x\right)}+\sqrt{cos^4x+4\cdot\left(1-cos^2x\right)}\)
\(=\sqrt{sin^4x-4sin^xx+4}+\sqrt{cos^4x-4\cdot cos^2x+4}\)
\(=\sqrt{\left(sin^2x-2\right)^2}+\sqrt{\left(cos^2x-2\right)^2}\)
\(=\left|sin^2x-2\right|+\left|cos^2x-2\right|\)
\(=2-sin^2x+2-cos^2x\)
\(=4-\left(sin^2x+cos^2x\right)=4-1=3\)
Tính giá trị của biểu thức D= 6,25x\(^2\) - 4( x - 2,25 ) : (0,8 + 2x) biết rằng /x/ = 0,6
Cho sinx=-0,8, với x ∈ (\(\pi\);\(\dfrac{3\pi}{2}\))
a)Tìm các giá trị lượng giác còn lại của góc x.
b)Tính giá trị của biểu thức P=2cos2x và Q = tan\(\left(2x+\dfrac{\pi}{3}\right)\)
a.Ta có : \(x\in\left(\pi;\dfrac{3}{2}\pi\right)\Rightarrow cosx< 0\)
\(cosx=-\sqrt{1-sin^2x}=-\sqrt{1-0,8^2}=-0,6\)
\(tanx=\dfrac{4}{3};cotx=\dfrac{3}{4}\)
b. cos 2x = \(cos^2x-sin^2x=0,6^2-0,8^2=-0,28\)
\(P=2.cos2x=-0,56\)
\(Q=tan\left(2x+\dfrac{\pi}{3}\right)=\dfrac{tan2x+tan\dfrac{\pi}{3}}{1-tan2x.tan\dfrac{\pi}{3}}=\dfrac{tan2x+\sqrt{3}}{1-tan2x.\sqrt{3}}\)
tan 2x = \(\dfrac{2tanx}{1-tan^2x}=\dfrac{\dfrac{2.4}{3}}{1-\left(\dfrac{4}{3}\right)^2}=\dfrac{-24}{7}\)
\(Q=\dfrac{-\dfrac{24}{7}+\sqrt{3}}{1+\dfrac{24}{7}.\sqrt{3}}\) \(=\dfrac{-24+7\sqrt{3}}{7+24\sqrt{3}}\)
Tính giá trị của biểu thức D = 6,25x^2 - 4(x - 2,25) : (0,8 + 2x) biết rằng |x| = 0,6
Giải các phương trình sau :
a) \(3sin^2x-4sinxcosx+5cos^2x=2\)
b) \(25sin^2x+15sin2x+9cos^2=25\)
c) sinx + cosx =1
d) 3cos2x - 4sin2x =1
f) \(4sin^2x-6cos^2x=0\)
g) \(5sin2x-6cos^2x=13\)
h) \(sinx=\sqrt{3}cosx\)
i) \(sin^4x+cos^4\left(x+\frac{\pi}{4}\right)=\frac{1}{4}\)
j)\(tanx+2cotx-3=0\)
k) \(tan^25x=\frac{1}{3}\)
m) \(sin^4x-cos^4x=cosx-2\)
a)
PT $\Leftrightarrow \sin ^2x-4\sin x\cos x+3\cos ^2x+2(\sin ^2x+\cos ^2x)=2$
$\Leftrightarrow \sin ^2x-4\sin x\cos x+3\cos ^2x=0$
$\Leftrightarrow (\sin x-3\cos x)(\sin x-\cos x)=0$
Nếu $\sin x-3\cos x=0$. Dễ thấy $\sin x, \cos x\neq 0$ nên $\tan x=\frac{\sin x}{\cos x}=3$
$\Rightarrow x=k\pi +\tan ^{-1}(3)$ với $k$ nguyên
Nếu $\sin x=\cos x$ thì tương tự ta có $\tan x=1\Rightarrow x=\pi (k+\frac{1}{4})$ với $k$ nguyên
b)
PT $\Leftrightarrow 25(\sin ^2x+\cos ^2x)+30\sin x\cos x-16\cos ^2x=25$
$\Leftrightarrow 30\sin x\cos x-16\cos ^2x=0$
$\Leftrightarrow \cos x(15\sin x-8\cos x)=0$
Nếu $\cos x=0\Rightarrow x=\pi (k+\frac{1}{2})$ với $k$ nguyên
Nếu $15\sin x-8\cos x=0$
Dễ thấy $\cos x\neq 0$ nên suy ra $\tan x=\frac{\sin x}{\cos x}=\frac{8}{15}$
$\Rightarrow x=k\pi +\tan ^{-1}(\frac{8}{15})$ với $k$ nguyên
c) \(\left\{\begin{matrix} \sin x+\cos x=1\\ \sin ^2x+\cos ^2x=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} (\sin x+\cos x)^2=1\\ \sin ^2x+\cos ^2x=1\end{matrix}\right.\)
\(\Rightarrow 2\sin x\cos x=0\Leftrightarrow \sin 2x=0\Rightarrow x=\frac{k}{2}\pi\) với $k$ nguyên.