Trả lời:
a, \(\sqrt{2x^2-9}-\sqrt{x^2+7}=0\left(\text{Đ}K:x\ge\dfrac{3\sqrt{2}}{2};x\le-\dfrac{3\sqrt{2}}{2}\right)\)
\(\Leftrightarrow\sqrt{2x^2-9}=\sqrt{x^2+7}\)
\(\Leftrightarrow2x^9-9=x^2+7\)
\(\Leftrightarrow x^2=16\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=-4\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{\pm4\right\}\)
b, \(\sqrt{3x^2+4x+15}=2x+1\)\(\left(\text{Đ}K:x\ge-\dfrac{1}{2}\right)\)
\(\Leftrightarrow3x^2+4x+15=\left(2x+1\right)^2\)
\(\Leftrightarrow3x^2+4x+15=4x^2+4x+1\)
\(\Leftrightarrow x^2=14\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{14}\left(tm\right)\\x=-\sqrt{14}\left(ktm\right)\end{matrix}\right.\)
Vậy \(S=\left\{\sqrt{14}\right\}\)
c, \(\sqrt{x-5}+\dfrac{2}{3}\sqrt{x-5}-2\dfrac{1}{2}\sqrt{x-5}=\dfrac{1}{6}\left(\text{Đ}K:x\ge5\right)\)
\(\Leftrightarrow-\dfrac{5}{6}\sqrt{x-5}=\dfrac{1}{6}\Leftrightarrow\sqrt{x-5}=-\dfrac{1}{5}\) (vô lí)
=> pt vô nghiệm.