Tìm x
2x.(x-\(\dfrac{1}{7}\))=0
Giải các phương trình sau:
a) x x − 3 + 2 x − 3 = 0 ;
b) x 2 x − 1 − x 2 x + 2 + x 3 − x + 3 = 0
a) Biến đổi về dạng (x - 3)(x + 2) = 0. Tìm được x ∈ { - 2 ; 3 }
b) Thu gọn về dạng -2x + 3 = 0. Tìm được x = 3 2
tìm x
2x(2x-1)-(2x+5)2=0
\(2x\left(2x-1\right)-\left(2x+5\right)^2=0\)
=>\(4x^2-2x-4x^2-20x-25=0\)
=>-22x-25=0
=>22x+25=0
=>22x=-25
=>\(x=-\dfrac{25}{22}\)
tìm x:
a)\(\dfrac{-3}{x+5}< 0\) b)\(\dfrac{2x+1}{7}< 0\) c)x\(^2\) - 5x + 4 >0 d)\(\dfrac{x+1}{x-1}< 1\)
a) 1\(\dfrac{2}{3}\). b)\(\dfrac{1}{7}\). c) 1 d )0
a: =>x+5>0
hay x>-5
b: =>2x+1<0
hay x<-1/2
c: =>(x-1)(x-4)>0
=>x>4 hoặc x<1
a) x>-5 ĐKXĐ x\(\ne\)-5
b)x<\(-\dfrac{1}{2}\)
c)x>4 hoặc x<1
d)ĐKXĐ x\(\ne\)1, ko tìm đc x
Tìm x :
1) \(\left(-0,75x+\dfrac{5}{2}\right).\dfrac{4}{7}-\left(-\dfrac{1}{3}\right)=-\dfrac{5}{6}\)
2) \(\left(4x-9\right)\left(2,5+\dfrac{-7}{3}x\right)=0\)
3) \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
4)\(\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\dfrac{-64}{125}\)
3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
Tìm x: \(\left(x-\dfrac{1}{5}\right):\left(x-1\dfrac{6}{7}\right)< 0\)
\(\dfrac{\left(x-\dfrac{1}{5}\right)}{x-1\dfrac{6}{7}}< 0\)
=>\(\dfrac{x-\dfrac{1}{5}}{x-\dfrac{13}{7}}< 0\)
TH1: x-1/5>0 và x-13/7<0
=>x>1/5 và x<13/7
=>1/5<x<13/7
TH2: x-1/5<0 và x-13/7>0
=>x>13/7 hoặc x<1/5
=>Loại
\(\left(x-\dfrac{1}{5}\right):\left(x-1\dfrac{6}{7}\right)< 0\)
\(\Rightarrow\left(x-\dfrac{1}{5}\right):\left(x-\dfrac{13}{7}\right)< 0\)
\(\Rightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{1}{5}< 0\\x-\dfrac{13}{7}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{1}{5}>0\\x-\dfrac{13}{7}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{1}{5}\\x>\dfrac{13}{7}\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{1}{5}\\x< \dfrac{13}{7}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{1}{5}\\x>\dfrac{13}{7}\end{matrix}\right.\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow\dfrac{13}{7}< x< \dfrac{1}{5}\)
Để giải bất phương trình này, ta cần tìm khoảng giá trị của x thỏa mãn bất phương trình đã cho.Đầu tiên, ta cần tìm điểm mà tử số và mẫu số của biểu thức đạt giá trị 0.Tử số đạt giá trị 0 khi x - 15 = 0, tức x = 15.Mẫu số đạt giá trị 0 khi x - 167 = 0, tức x = 167.Tiếp theo, ta cần xác định khoảng giá trị nằm giữa hai điểm đã tìm được. Ta chọn một điểm x bất kỳ trong khoảng giữa 15 và 167, ví dụ x = 100.Đặt x = 100 vào biểu thức đã cho:(100 - 15) : (100 - 167) < 085 : (-67) < 0-85/67 < 0Vì biểu thức đạt giá trị âm, nên ta có: (x - 15) : (x - 167) < 0
7. P = \(\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\) tìm x để P< 1 với x ≥ 0 , x ≠ 4
8. P = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) tìm x để P < 1/4 với x≥0, x ≠ 1
8: Để \(P< \dfrac{1}{4}\) thì \(P-\dfrac{1}{4}< 0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}-8-\sqrt{x}-1}{\sqrt{x}+1}< 0\)
\(\Leftrightarrow3\sqrt{x}< 9\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
7.
\(P< 1\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}-1}< 1\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}-1}-1< 0\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\dfrac{x+1}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
\(\Leftrightarrow x< 1\)
Vậy \(0\le x< 1\)
8.
\(P< \dfrac{1}{4}\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< \dfrac{1}{4}\)
\(\Leftrightarrow4\left(\sqrt{x}-2\right)< \sqrt{x}+1\)
\(\Leftrightarrow4\sqrt{x}-8< \sqrt{x}+1\)
\(\Leftrightarrow3\sqrt{x}< 9\)
\(\Leftrightarrow x< 9\)
Vậy \(0\le x< 9;x\ne1\)
Tìm x
2x + 1 - 2 x = 32
2ˣ⁺¹ - 2ˣ = 32
2ˣ.(2 - 1) = 32
2ˣ.1 = 32
2ˣ = 2⁵
x = 5
Tìm các số nguyên x và y biết \(\dfrac{x}{7}+\dfrac{1}{y}=\dfrac{-1}{14}\) ( với y ≠ 0 )
\(\dfrac{x}{7}+\dfrac{1}{y}=-\dfrac{1}{14}\Leftrightarrow\dfrac{xy+7}{7y}=\dfrac{\dfrac{-y}{2}}{7y}\\ \Leftrightarrow xy+7=-\dfrac{y}{2}\\ 2xy+14=-y\\ y\left(2x+1\right)=-14\)
Vì y,x là số nguyên nên 2x-1 là ước lẻ của -14 = {1;-1;7;-7}
Ta có bảng sau:
| 2x+1 | 1 | -1 | 7 | -7 |
| x | 0 | -1 | 3 | -4 |
| y | -14 | 14 | -2 | 2 |
Vậy (x,y) thuộc {(0,-14);(-1,14);(3,-2);(-4,2)}
vậy x và y e (-1,14),(0,-14),(3,-2),(-4,2)
Vì x/7+1/y=-1/14
=xy+7/7y=2/7y
xy+7=y/-2 (y/-2=-y/2)
2yx+14=-y
y.(2x+1)=-14
X và Y là số nguyên
2x-1 ước số lẻ của -14 :-7,-1,1,7
X =0,-1,3,-4
Y=-14,-2,2,14
Tìm số nguyên x, y biết: \(\dfrac{x}{7}+\dfrac{1}{y}=\dfrac{-1}{14}\) (biết y ko bằng 0)
=>(xy+7)/7y=-1/14
=>xy+7=-1/2y
=>2xy+14=y
=>y(2x-1)=-14
=>(y;2x-1) thuộc {(-14;1); (14;-1); (-2;7); (2;-7)}
=>(y,x) thuộc {(-14;1); (14;0); (-2;4); (2;-3)}
Tìm x
2x^2 +3x=0
\(2x^2+3x=0\)
\(\Leftrightarrow x\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(S=\left\{0,-\dfrac{3}{2}\right\}\)