a+1=3
tìm a
a,b,cc>0, a+b+c\(\le\)3
tìm Min \(P=a^2+b^2+c^2+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho đa thức.f (x)=2x + \(a^2\) - 3Tìm a để f ( x) có nghiệm:
a) x=1 b) x=\(\dfrac{-1}{2}\)
TK
Phương pháp giải:
- Đa thức f(x) có nghiệm là –2 nên f(–2) = 0, từ đó ta tìm được c.
- Đa thức g(x) có nghiệm là x1=1;x2=2x1=1;x2=2 nên g(1) = 0; g(2) = 0, từ đó ta tìm được a, b.
- Giải h(x) = 0 để tìm nghiệm của h(x).
Giải chi tiết:
a) Đa thức f(x) có nghiệm là –2 nên f(–2) = 0
⇒2.(−2)2−3.(−2)+c=0⇔2.4+6+c=0⇔14+c=0⇔c=−14.⇒2.(−2)2−3.(−2)+c=0⇔2.4+6+c=0⇔14+c=0⇔c=−14.
Vậy đa thức f(x) có nghiệm là –2 thì c=−14c=−14.
b) Đa thức g(x) có nghiệm là x1=1; x2=2x1=1; x2=2 nên g(1) = 0; g(2) = 0
⇒{12+1.a+b=022+2.a+b=0⇔{1+a+b=04+2a+b=0⇔{a+b=−12a+b=−4⇔{b=−1−a2a+(−1−a)=−4⇔{b=−1−a2a−1−a=−4⇔{b=−1−aa−1=−4⇔{b=−1−aa=−4+1⇔{a=−3b=−1−(−3)⇔{a=−3b=2⇒{12+1.a+b=022+2.a+b=0⇔{1+a+b=04+2a+b=0⇔{a+b=−12a+b=−4⇔{b=−1−a2a+(−1−a)=−4⇔{b=−1−a2a−1−a=−4⇔{b=−1−aa−1=−4⇔{b=−1−aa=−4+1⇔{a=−3b=−1−(−3)⇔{a=−3b=2
Vậy đa thức g(x) có hai nghiệm là x1=1; x2=2x1=1; x2=2 thì a=−3; b=2.a=−3; b=2.
c) Ta có: f(x)=2x2−3x−14; g(x)=x2−3x+2.f(x)=2x2−3x−14; g(x)=x2−3x+2.
h(x)=f(x)−g(x)=(2x2−3x−14)−(x2−3x+2)=2x2−3x−14−x2+3x−2=x2−16.h(x)=0⇒x2−16=0⇒x2=16⇒[x=4x=−4h(x)=f(x)−g(x)=(2x2−3x−14)−(x2−3x+2)=2x2−3x−14−x2+3x−2=x2−16.h(x)=0⇒x2−16=0⇒x2=16⇒[x=4x=−4
Vậy tập nghiệm của đa thức h(x) là {4;−4}
Cho đa thức.f (x)=2x +\(a^2\)- 3Tìm a để f ( x) có nghiệm:
a) x=1 b) x=\(\dfrac{-1}{2}\)
TK
Phương pháp giải:
- Đa thức f(x) có nghiệm là –2 nên f(–2) = 0, từ đó ta tìm được c.
- Đa thức g(x) có nghiệm là x1=1;x2=2x1=1;x2=2 nên g(1) = 0; g(2) = 0, từ đó ta tìm được a, b.
- Giải h(x) = 0 để tìm nghiệm của h(x).
Cho đa thức.f (x)=2x +\(a^2\)- 3Tìm a để f ( x) có nghiệm:
a) x=1 b) x=\(\dfrac{-1}{2}\)
f(x)=0 \(\Leftrightarrow\) 2x+a2-3=0 \(\Rightarrow\) x=\(\dfrac{3-a^2}{2}\).
a) x=1 \(\Leftrightarrow\) \(\dfrac{3-a^2}{2}\)=1 \(\Rightarrow\) a=\(\pm\)1.
b) x=\(\dfrac{-1}{2}\) \(\Leftrightarrow\) \(\dfrac{3-a^2}{2}\)=\(\dfrac{-1}{2}\) \(\Rightarrow\) a=\(\pm\)2.
A=x3 + x2y-xy2-y3+x2-y2+2x+2x+3
Tìm giá trị của đa thức A biết x+y= -1
Sửa đề: \(A=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)
\(A=x^2\left(x+y\right)-y^2\left(x+y\right)+\left(x-y\right)\left(x+y\right)+2x+2y+3\)
\(=-x^2+y^2+\left(-x+y\right)-2+3\)
\(=-\left(x-y\right)\left(x+y\right)-\left(x-y\right)+1\)
\(=\left(x-y\right)\left(-x-y-1\right)+1\)
\(=\left(x-y\right)\left(1-1\right)+1=1\)
Cho a,b,c>0 thỏa a + b + c = 3
Tìm GTNN của biểu thức C = \(a^5+b^5+c^5+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\)
Mình nghĩ đề bị sai bạn ạ, bạn xem lại giùm mình nhé
Cho A=2(x+1)/x+3
Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên
Giúp mik với nhanh nhé
A∈Z⇒\(\dfrac{2\left(x+1\right)}{x+3}\in Z\Rightarrow\left(2x+2\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(2x+6-4\right)⋮\left(x+3\right)\\ \Rightarrow\left[2\left(x+3\right)-4\right]⋮\left(x+3\right)\)
\(\text{Mà}2\left(x+3\right)⋮\left(x+3\right)\\ \Rightarrow-4⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left(-4\right)=\left\{-4;-2;-1;1;2;4\right\}\\ \Rightarrow x\in\left\{-7;-5;-4;-2;-1;1\right\}\)
- Bạn ơi lớp 6 cũng làm được nhé :)
x ∈{0;-6;-2;-4}
\(A=\dfrac{2\left(x+1\right)}{x+3}=\dfrac{2\left(x+3\right)-4}{x+3}=2-\dfrac{4}{x+3}\)
Để A nguyên \(\Rightarrow\dfrac{4}{x+3}\) nguyên
\(\Rightarrow x+3=Ư\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow x=\left\{-7;-5;-4;-2;-1;1\right\}\)
a,b,c>o a+b+c=3
tìm Max P=a+ab+abc
cho A = x trên x + 3
tìm x thuộc Z để A nguyên
\(A=\dfrac{x}{x+3}=1-\dfrac{3}{x+3}\in Z\)
\(\Rightarrow\left(x+3\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{-6;-4;-2;0\right\}\)
cho a b c là các số thực thỏa mãn a,b ≥0 0≤ c ≤ 1 và a^2 +b^2 +c^2 =3
Tìm min max P= ab + bc +ca +3(a+b+c)