Chủ đề:
Ôn thi vào 10Câu hỏi:
Cho a,b,c>0 thỏa a + b + c = 3
Tìm GTNN của biểu thức C = \(a^5+b^5+c^5+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\)
cho ΔABC nhọn (AB<AC) có 3 đường cao AD,BE,CF cắt nhau tại H.
a. CMR: DHEC nội tiếp. Xác định tâm O của đường tròn ngoại tiếp tứ giác DHEC.
b. Lấy điểm I thuộc cung nhỏ EC của (O) sao cho IC>IE, DI cắt CE tại M, EF cắt IC tại N. Cmr: MI.MD=ME.MC và MN//AB
c. Đường thẳng HN cắt (O) tịa K, KM cắt (O) tại G (G khác K), MN cắt BC tại Q. CMR: H,Q,G thẳng hàng
Trong mặt phẳng tọa độ Oxy, cho (P):y= \(-\dfrac{1}{4}x^{2}\) Gọi M là điểm thuộc (P) có hoành độ x=2. Lập pt đường thẳng đi qua điểm M đồng thời cắt trục hoành và trục tung lần lượt tại 2 điểm phân biệt A và B sao cho \(S_{OMA}=2S_{OMB}\)
Cho tam giác ABC cân tại A nội tiếp đường tròn (O). Từ một điểm M tùy ý trên dây BC, kẻ các đường thẳng song song với AC và AB, chúng cắt AB và AC lần lượt tại P và Q. Gọi D là điểm đối xứng của M qua đường thẳng PQ.
Chứng minh: D nằm trên đường tròn (O).
chứng minh OM là ĐTB sao ạ?