Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
28 tháng 6 2017 lúc 17:04

Phép chia các phân thức đại số

Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 1 2022 lúc 14:01

Đề thiếu rồi bạn

Nguyễn Thị Chuyên
Xem chi tiết
Lấp La Lấp Lánh
23 tháng 8 2021 lúc 9:36

3) \(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(x+x-4\right)=0\Leftrightarrow2\left(x-4\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

Minh Hiếu
23 tháng 8 2021 lúc 9:32

4x.(x+1)-8(x+1)=0

(4x-8)(x+1)=0

suy ra x=2 hoặc x=-1

Lấp La Lấp Lánh
23 tháng 8 2021 lúc 9:34

1) \(4x\left(x+1\right)=8\left(x+1\right)\Leftrightarrow4x^2+4x=8x+8\Leftrightarrow4x^2-4x-8=0\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vũ Đức Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 4 2023 lúc 19:31

a: \(B=\dfrac{3x\left(2x-3\right)-4\left(2x+3\right)-4x^2+23x+12}{\left(2x-3\right)\left(2x+3\right)}\cdot\dfrac{2x+3}{x+3}\)

\(=\dfrac{6x^2-9x-8x-12-4x^2+23x+12}{2x-3}\cdot\dfrac{1}{x+3}\)

\(=\dfrac{2x^2+6x}{\left(2x-3\right)}\cdot\dfrac{1}{x+3}=\dfrac{2x}{2x-3}\)

b: 2x^2+7x+3=0

=>(2x+3)(x+2)=0

=>x=-3/2(loại) hoặc x=-2(nhận)

Khi x=-2 thì \(A=\dfrac{2\cdot\left(-2\right)}{-2-3}=\dfrac{-4}{-7}=\dfrac{4}{7}\)

d: |B|<1

=>B>-1 và B<1

=>B+1>0 và B-1<0

=>\(\left\{{}\begin{matrix}\dfrac{2x+2x-3}{2x-3}>0\\\dfrac{2x-2x+3}{2x-3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3< 0\\\dfrac{4x-3}{2x-3}>0\end{matrix}\right.\Leftrightarrow x< \dfrac{3}{4}\)

Thảo Bùi
Xem chi tiết
Nguyễn Trần Thành Đạt
3 tháng 5 2021 lúc 12:27

Không có dấu "=" hay như nào đâu giải tìm x được

piojoi
Xem chi tiết
Toru
11 tháng 9 2023 lúc 19:05

\(a,-\dfrac{x}{2}+\dfrac{2x}{3}+\dfrac{x+1}{4}+\dfrac{2x+1}{6}=\dfrac{8}{3}\)

\(\Rightarrow-\dfrac{6x}{12}+\dfrac{8x}{12}+\dfrac{3\left(x+1\right)}{12}+\dfrac{2\left(2x+1\right)}{12}=\dfrac{8}{3}\)

\(\Rightarrow\dfrac{-6x+8x+3x+3+4x+2}{12}=\dfrac{8}{3}\)

\(\Rightarrow\dfrac{9x+5}{12}=\dfrac{8}{3}\)

\(\Rightarrow27x+15=96\)

\(\Rightarrow27x=81\)

\(\Rightarrow x=3\left(tm\right)\)

\(b,\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\)

\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{3\left(2x+1\right)}=\dfrac{6}{13}\)

\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}=\dfrac{6}{13}\)

\(\Rightarrow\dfrac{3+5-2}{2x+1}=\dfrac{6}{13}\)

\(\Rightarrow\dfrac{6}{2x+1}=\dfrac{6}{13}\)

\(\Rightarrow2x+1=13\)

\(\Rightarrow2x=12\)

\(\Rightarrow x=6\left(tm\right)\)

#Toru

HT.Phong (9A5)
11 tháng 9 2023 lúc 19:08

a) \(-\dfrac{x}{2}+\dfrac{2x}{3}+\dfrac{x+1}{4}+\dfrac{2x+2}{6}=\dfrac{8}{3}\) 

\(\Rightarrow\dfrac{-6x}{12}+\dfrac{8x}{12}+\dfrac{3\left(x+1\right)}{12}+\dfrac{2\left(2x+1\right)}{12}=\dfrac{4\cdot8}{12}\)

\(\Rightarrow-6x+8x+3x+3+4x+2=32\)

\(\Rightarrow9x+5=32\)

\(\Rightarrow9x=32-5\)

\(\Rightarrow9x=27\)

\(\Rightarrow x=\dfrac{27}{9}\)

\(\Rightarrow x=3\)

b) \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\) (ĐK: \(x\ne-\dfrac{1}{2}\)

\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{3\left(2x+1\right)}=\dfrac{6}{13}\)

\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}=\dfrac{6}{13}\)

\(\Rightarrow\dfrac{6}{2x+1}=\dfrac{6}{13}\)

\(\Rightarrow2x+1=13\)

\(\Rightarrow2x=12\)

\(\Rightarrow x=\dfrac{12}{2}\)

\(\Rightarrow x=6\left(tm\right)\)

lmao lmao
Xem chi tiết
Trần Minh Hoàng
25 tháng 5 2021 lúc 18:59

ĐKXĐ: \(3-2x\ge0\Leftrightarrow x\le\dfrac{3}{2}\)

Trần Minh Hoàng
25 tháng 5 2021 lúc 19:18

b) ĐKXĐ: \(-1\le x\le3\)

c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\\x\ne3\end{matrix}\right.\).

d) ĐKXĐ: \(x< \dfrac{3}{5}\).

Nguyễn Ngọc Thùy Duyên
Xem chi tiết
missing you =
1 tháng 7 2021 lúc 15:40

a, đề này chắc sai ở đoạn \(\dfrac{2x}{x^2-3}\) sửa thành \(\dfrac{2x}{x-3}\)

\(=>đk:x\ne1,x\ne3\)

\(=>A=\dfrac{2x}{x-3}+\dfrac{2x}{x^2-4x+3}+\dfrac{x}{x-1}\)

\(=\dfrac{2x\left(x-1\right)+2x+x\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{2x^2-2x+2x+x^2-3x}{\left(x-1\right)\left(x-3\right)}\)

\(=\dfrac{3x^2-3x}{\left(x-1\right)\left(x-3\right)}=\dfrac{3x\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{3x}{x-3}\)

b, \(A=\dfrac{3x}{x-3}=3+\dfrac{9}{x-3}\)

A nguyên <=>\(x-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

\(=>x\in\left\{4;2;6;0;12;-6\right\}\left(TM\right)\)

Bơ Ngố
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2022 lúc 9:56

Chọn D

ThanhNghiem
Xem chi tiết

\(a,\dfrac{x^2+2}{x^3+1}-\dfrac{1}{x+1}\left(ĐKXĐ:x\ne-1\right)\\ =\dfrac{x^2+2-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\\ c,\dfrac{1}{2-2x}-\dfrac{3}{2+2x}+\dfrac{2x}{x^2-1}\\ =\dfrac{-1}{2\left(x-1\right)}-\dfrac{3}{2\left(x+1\right)}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\left(ĐKXĐ:x\ne\pm1\right)\\ =\dfrac{-1\left(x+1\right)-3\left(x-1\right)+2x.2}{2\left(x+1\right)\left(x-1\right)}\\ =\dfrac{-x-1-3x+3+4x}{2\left(x+1\right)\left(x-1\right)}=\dfrac{2}{2\left(x+1\right)\left(x-1\right)}=\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)

HT.Phong (9A5)
23 tháng 9 2023 lúc 7:00

\(\dfrac{x}{x^2-2x}-\dfrac{x^2+4x}{x^3-4x}-\dfrac{2}{x^2+2x}\) (ĐK: \(x\ne0;x\ne\pm2\) )
\(=\dfrac{x}{x\left(x-2\right)}-\dfrac{x\left(x+4\right)}{x\left(x^2-4\right)}-\dfrac{2}{x\left(x+2\right)}\)

\(=\dfrac{1}{x-2}-\dfrac{x+4}{\left(x+2\right)\left(x-2\right)}-\dfrac{2}{x\left(x+2\right)}\)

\(=\dfrac{x\left(x+2\right)}{x\left(x+2\right)\left(x-2\right)}-\dfrac{x\left(x+4\right)}{x\left(x+2\right)\left(x-2\right)}-\dfrac{2\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2+2x-x^2-4x-2x+4}{x\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{-4x+4}{x\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{4-4x}{x^3-4x}\) 

\(b,\dfrac{x}{x^2-2x}-\dfrac{x^2+4x}{x^3-4x}-\dfrac{2}{x^2+2x}\\ =\dfrac{x}{x\left(x-2\right)}-\dfrac{x^2+4x}{x\left(x^2-4\right)}-\dfrac{2}{x\left(x+2\right)}\left(ĐKXĐ:x\ne0;x\ne\pm2\right)\\ =\dfrac{x\left(x+2\right)-\left(x^2+4x\right)-2\left(x-2\right)}{x\left(x+2\right)\left(x-2\right)}\\ =\dfrac{x^2-x^2+2x-4x-2x+4}{x\left(x+2\right)\left(x-2\right)}\\ =\dfrac{-4x+4}{x\left(x+2\right)\left(x-2\right)}\)