\(\sqrt{35-12\sqrt{6}}\)
giúp em với ạ
\(\sqrt{5
+2\sqrt{ }6}\)
\(\sqrt{12+2\sqrt{ }35}-\sqrt{12-2\sqrt{ }35}\)
\(\sqrt{16+6\sqrt{ }7}\)
\(\sqrt{31-12\sqrt{ }3}\)
\(\sqrt{27+10\sqrt{ }2}\)
\(\sqrt{14+6\sqrt{ }5}\)
a: \(\sqrt{5+2\sqrt{6}}=\sqrt{3}+\sqrt{2}\)
b: \(\sqrt{12+2\sqrt{35}}-\sqrt{12-2\sqrt{35}}=\sqrt{7}+\sqrt{5}-\sqrt{7}+\sqrt{5}=2\sqrt{5}\)
c: \(\sqrt{16+6\sqrt{7}}=4+\sqrt{7}\)
d: \(\sqrt{31-12\sqrt{3}}=3\sqrt{3}-2\)
e: \(\sqrt{27+10\sqrt{2}}=5+\sqrt{2}\)
f: \(\sqrt{14+6\sqrt{5}}=3+\sqrt{5}\)
1)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
2)\(\sqrt{35+12\sqrt{6}}-\sqrt{35-12\sqrt{6}}\)
3)\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
`1)A=sqrt{4+sqrt{10+2sqrt5}}+sqrt{4-sqrt{10+2sqrt5}}`
`<=>A^2=4+sqrt{10+2sqrt5}+4-sqrt{10+2sqrt5}+2sqrt{16-10-2sqrt5}`
`<=>A^2=8+2sqrt{6-2sqrt5}`
`<=>A^2=8+2sqrt{(sqrt5-1)^2}`
`<=>A^2=8+2(sqrt5-1)`
`<=>A^2=6+2sqrt5=(sqrt5+1)^2`
`<=>A=sqrt5+1(do \ A>0)`
`b)B=sqrt{35+12sqrt6}-sqrt{35-12sqrt6}`
Vì `35+12sqrt6>35-12sqrt6`
`=>B>0`
`B^2=35+12sqrt6+35-12sqrt6-2sqrt{35^2-(12sqrt6)^2}`
`<=>B^2=70-2sqrt{361}`
`<=>B^2=70-2sqrt{19^2}=70-38=32`
`<=>B=sqrt{32}=4sqrt2(do \ B>0)`
`3)(4+sqrt{15})(sqrt{10}-sqrt6)sqrt{4-sqrt{15}}`
`=sqrt{4+sqrt{15}}.sqrt{4-sqrt{15}}.sqrt{4+sqrt{15}}(sqrt{10}-sqrt6)`
`=sqrt{16-15}.sqrt2(sqrt5-sqrt3).sqrt{4+sqrt{15}}`
`=sqrt{8+2sqrt{15}}(sqrt5-sqrt3)`
`=sqrt{5+2sqrt{5.3}+3}(sqrt5-sqrt3)`
`=sqrt{(sqrt5+sqrt3)^2}(sqrt5-sqrt3)`
`=(sqrt5+sqrt3)(sqrt5-sqrt3)`
`=5-3=2`
Rút gọn: \(\frac{\sqrt{12-2\sqrt{35}}+\sqrt{8-2\sqrt{15}}+\sqrt{5-2\sqrt{6}}}{\sqrt{12+2\sqrt{35}}-\sqrt{8+2\sqrt{15}}+\sqrt{5-2\sqrt{6}}}\)
\(\left(\sqrt{6-\sqrt{35}}\right)^x+\left(\sqrt{6+\sqrt{35}}\right)^x=12\)
Đặt \(a=\sqrt{6-\sqrt{35}};b=\sqrt{6+\sqrt{35}}\left(a;b\ge0\right)\)
Ta có hpt: \(\left\{{}\begin{matrix}a^x+b^x=12\\a^2+b^2=12\end{matrix}\right.\)\(\Rightarrow x=2\)
Vậy pt có tập nghiệm là x=2.
Akai HarumaNguyễn Việt LâmMysterious PersonDƯƠNG PHAN KHÁNH DƯƠNG Kiểm tra giùm e xem có đúng không? Sao thấy dễ thế.
Đặt \(\left(\sqrt{6-\sqrt{35}}\right)^x=a>0\Rightarrow\left(\sqrt{6+\sqrt{35}}\right)^x=\dfrac{1}{a}\)
Pt trở thành: \(a+\dfrac{1}{a}=12\Leftrightarrow a^2-12a+1=0\Rightarrow\left[{}\begin{matrix}a=6+\sqrt{35}\\a=6-\sqrt{35}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(\sqrt{6-\sqrt{35}}\right)^x=\left(6-\sqrt{35}\right)^{\dfrac{x}{2}}=6+\sqrt{35}\\\left(\sqrt{6-\sqrt{35}}\right)^x=\left(6-\sqrt{35}\right)^{\dfrac{x}{2}}=6-\sqrt{35}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(6-\sqrt{35}\right)^{\dfrac{x}{2}}=\left(6-\sqrt{35}\right)^{-1}\\\left(6-\sqrt{35}\right)^{\dfrac{x}{2}}=\left(6-\sqrt{35}\right)^1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{2}=-1\\\dfrac{x}{2}=1\end{matrix}\right.\) \(\Rightarrow x=\pm2\)
\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
Trả lời:
\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
\(=\sqrt{9-6\sqrt{6}+6}+\sqrt{27-12\sqrt{6}+8}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\)
\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)
Bài làm:
Ta có: \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
\(=\sqrt{9-6\sqrt{6}+6}+\sqrt{36-12\sqrt{6}+6-7}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(6-\sqrt{6}\right)^2-7}\)
\(=3-\sqrt{6}+\sqrt{\left(-1-\sqrt{6}\right)\left(13-\sqrt{6}\right)}\)
Đến đây thì chịu rồi!
Giải :\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\\ =\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{27-2\cdot6\sqrt{6}+8}\\ =\sqrt{3^2-2\cdot3\cdot\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}\right)^2-2\cdot3\sqrt{3}\cdot2\sqrt{2}+\left(2\sqrt{2}\right)^2}\\ =\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\\ =3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)
Mình chỉ rút gọn được đến đó thôi, sorry :<<
Tính:
1) \(\sqrt{14-2\sqrt{33}}\)
2) \(\sqrt{12-2\sqrt{35}}\)
3) \(\sqrt{16-2\sqrt{55}}\)
4) \(\sqrt{14-6\sqrt{5}}\)
5) \(\sqrt{17-12\sqrt{2}}\)
6) \(\sqrt{27-12\sqrt{5}}\)
7) \(\sqrt{4+\sqrt{15}}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
1)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}=\sqrt{11}-\sqrt{3}\)
2)
\(=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}=\sqrt{7}-\sqrt{5}\)
3)
\(=\sqrt{\left(\sqrt{11}\right)^2-2.\sqrt{11}\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)}=\sqrt{11}-\sqrt{5}\)
4)
\(=\sqrt{3^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
5)
\(=\sqrt{3^2-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}=\sqrt{\left(3-2\sqrt{2}\right)^2}=3-2\sqrt{2}\)
Tính
1. \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
2. \(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
3. \(\left(\sqrt{2}-\sqrt{9}\right)\left(\sqrt{11+2\sqrt{18}}\right)\)
4. \(\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{12-2\sqrt{35}}\right)\)
1,\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
2, (tương tự ý 1 cũng tách thành hằng đẳng thức \(\sqrt{46-6\sqrt{5}}=\sqrt{\left(3\sqrt{5}-1\right)^2}\)và \(\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}\)
3,\(\left(\sqrt{2}-\sqrt{9}\right)\left(\sqrt{\left(3+\sqrt{2}\right)^2}\right)=\left(\sqrt{2}-3\right)\left(\sqrt{2}+3\right)=2-9=-7\)
4, tương tự ý 3
Rút gọn:
\(\sqrt{35-12\sqrt{6}}-\sqrt{20-8\sqrt{6}}\)
\(\sqrt{35-12\sqrt{6}}-\:\sqrt{20-8\sqrt{6}}\)
= \(\sqrt{27-2×2\sqrt{2}×3\sqrt{3}+8}-\sqrt{12-2×2\sqrt{2}×2\sqrt{3}+8}\)
= \(3\sqrt{3}-2\sqrt{2}-2\sqrt{3}+2\sqrt{2}\)
= \(\sqrt{3}\)
cảm ơn bạn nhưng mình cần cách giải chứ không phải đáp án
\(\dfrac{\sqrt{10}-\sqrt{15}}{\sqrt{8}-\sqrt{12}}\)
\(\dfrac{\sqrt{6}-\sqrt{15}}{\sqrt{35}-\sqrt{14}}\)
\(\dfrac{5+\sqrt{5}}{\sqrt{10}+\sqrt{2}}\)
\(\dfrac{\sqrt{10}-\sqrt{15}}{\sqrt{8}-\sqrt{12}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{4}\left(\sqrt{2}-\sqrt{3}\right)}\)
\(=\dfrac{\sqrt{5}}{\sqrt{4}}\)
\(=\dfrac{\sqrt{5}}{2}\)
\(\dfrac{\sqrt{6}-\sqrt{15}}{\sqrt{35}-\sqrt{14}}\)
\(=\dfrac{\sqrt{3}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}\)
\(=-\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}\)
\(=-\dfrac{\sqrt{3}}{\sqrt{7}}\)
\(=-\dfrac{\sqrt{21}}{7}\)
____________
\(\dfrac{5+\sqrt{5}}{\sqrt{10}+\sqrt{2}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{2}\left(\sqrt{5}+1\right)}\)
\(=\dfrac{\sqrt{5}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{10}}{2}\)