Điều kiện xác định của biểu thức\(\sqrt{\dfrac{x^2+3}{5x-4}}\) là
Tìm điều kiện xác định của các biểu thức sau
a, \(\sqrt{2-x^2}\)
b, \(\dfrac{x}{\sqrt{5x^2-3}}\)
c, \(\sqrt{-4x^2+4x-1}\)
d, \(\dfrac{1}{\sqrt{x^2+x-2}}\)
\(a,ĐK:2-x^2\ge0\Leftrightarrow x^2\le2\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\\ b,ĐK:5x^2-3>0\Leftrightarrow x^2>\dfrac{3}{5}\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{\sqrt{15}}{5}\\x< -\dfrac{\sqrt{15}}{5}\end{matrix}\right.\\ c,ĐK:-\left(2x-1\right)^2\ge0\Leftrightarrow x=\dfrac{1}{2}\\ d,ĐK:x^2+x-2>0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\)
Tìm điều kiện xác định của các biểu thức sau
a) \(\sqrt{\dfrac{x-1}{5-x}}\) ; b) \(\dfrac{1}{\sqrt{x^2-5x+6}}\)
a: ĐKXĐ: \(\dfrac{x-1}{5-x}\ge0\)
\(\Leftrightarrow\dfrac{x-1}{x-5}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow1\le x< 5\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x>3\\x< 2\end{matrix}\right.\)
Tìm x:
a)\(\sqrt{3x-6}\)=3
b)\(\sqrt{5x-16}\)=2
c)Tìm điều kiện xác định của biểu thức: B=\(\dfrac{2x-3}{x^2-4x+3}\)
a) ĐK: x ≥ 2
\(\sqrt{3x-6}=3\)
\(\Leftrightarrow3x-6=9\)
<=> 3x = 15
<=> x = 5
Vậy:....
b) ĐK: 5x - 16 ≥ 0
<=> 5x ≥ 16
<=> x ≥ 16/5
\(\sqrt{5x-16}=2\)
<=> 5x - 16 = 4
<=> 5x = 20
<=> x = 4
c) ĐK: \(x^2-4x+3\ne0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)
bình phương hai vế ta được:
a)điều kiện của x:x≥2
3x-6=9 <=> x=5(nhận)
b)ĐK: x≥16/5
5x-16=4 <=>x=4(nhận)
c) ta có: \(\dfrac{2x-3}{\left(x-2\right)^2-1}\)= \(\dfrac{2x-3}{\left(x-3\right)\left(x-1\right)}\)
ĐKXĐ: x≠3 ;x≠1
a,\(\sqrt{3x-6}=3\) (với x\(\ge\)2)
=>\(\left(\sqrt{3x-6}\right)^2=3^2\)
<=>\(3x-6=9\)<=>\(3x=9+6\)<=>x=\(\dfrac{15}{3}\)=5(thỏa mãn)
b,\(\sqrt{5x-16}=2\) (với x\(\ge\)16/5)
=>\(\left(\sqrt{5x-16}\right)^2=2^2\)<=>\(5x-16=4< =>5x=20< =>x=4\)(thỏa mãn)
c,B xác định khi \(x^2-4x+3\ne0< =>x^2-2.2.x+2^2-1\ne0\)
\(< =>\left(x-2\right)^2-1\ne0\)
\(< =>\left(x-2+1\right)\left(x-2-1\right)\ne\)0
\(< =>\left(x-1\right)\left(x-3\right)\ne0\)
\(< =>\left[{}\begin{matrix}x-1\ne0\\x-3\ne0\end{matrix}\right.< =>\left[{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)
Cho biểu thức: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\left(\dfrac{2\sqrt{x}-4}{\sqrt{x}-3}-1\right)\)
a/ Tìm điều kiện xác định của biểu thức A
b/ Rút gọn A
c/ Tìm các giá trị nguyên của x để giá trị A là một số nguyên.
Câu 4: Cho biểu thức: \(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)
a. Tìm điều kiện xác định của biểu thức A
b. Rút gọn A
c. Tìm x để giá trị biểu thức A > \(\dfrac{2}{5}\)
\(a,ĐK:x>0;x\ne9\\ b,A=\dfrac{\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\\ A=\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{2}{\sqrt{x}+3}\\ c,A>\dfrac{2}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+3}-\dfrac{2}{5}>0\\ \Leftrightarrow\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{5}>0\\ \Leftrightarrow\dfrac{2-\sqrt{x}}{5\left(\sqrt{x}+3\right)}>0\\ \Leftrightarrow2-\sqrt{x}>0\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}< 2\Leftrightarrow0< x< 4\)
Tìm điều kiện xác định của các biểu thức
a. \(\sqrt{3x-6}\)
b. \(\sqrt{-3x+9}\)
c. \(\sqrt{\dfrac{4}{2x-1}}\)
d. \(\sqrt{\dfrac{-5}{-3x+2}}\)
e. \(\sqrt{\dfrac{5x-3}{-4}}\)
a)ĐK:`3x-6>=0`
`<=>3x>=6<=>x>=2`
b)ĐK:`-3x+9>=0`
`<=>-3x>=-9`
`<=>x<=3`
c)ĐK:`(-5)/(-3x+2)>=0(x ne -2/3)`
Vì `-5<0`
`<=>-3x+2<0`
`<=>-3x<-2`
`<=>x>2/3`
e)ĐK:`(5x-3)/(-4)>=0`
MÀ `-4<0`
`<=>5x-3<=0`
`<=>5x<=3`
`<=>x<=3/5`
Cho biểu thức A=(\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\)) : (\(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1x}\))
1.Tìm điều kiện xác định của biểu thức A.
2.Rút gọn A.
3.Tính giá trị biểu thức A khi x = \(\dfrac{1}{6-2\sqrt{5}}\).
4.Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
5.Tìm giá trị của x để biểu thức A bằng -3.
6.Tìm giá trị của x để biểu thức A nhỏ hơn -1.
7.Tìm giá trị của x để biểu thức A lớn hơn \(\dfrac{-2}{\sqrt{x}+1}\)
1) ĐKXĐ: \(x\notin\left\{0;1\right\}\)
2) Ta có: \(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\dfrac{x+\sqrt{x}+1-\left(x-\sqrt{x}+1\right)}{\sqrt{x}}:\dfrac{\sqrt{x}+1-3+\sqrt{x}}{\sqrt{x}+1}\)
\(=2\cdot\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
Tìm điều kiện xác định của biểu thức : B = \(\sqrt{x^2-3x}\) + \(\sqrt{\dfrac{x-5}{x-1}}\)- \(\sqrt[3]{2x-1}\)
bài 1: tìm điều kiện xác định với giá trị nào của x thì các biểu thức sau đây xác định
a, \(\sqrt{-2x+3}\)
b, \(\sqrt{3x+4}\)
c, \(\sqrt{1+x\overset{2}{ }}\)
d, \(\sqrt{^{-3}_{3x+5}}\)
e, \(\sqrt{\dfrac{2}{x}}\)
help me :((
a/ ĐKXĐ : \(-2x+3\ge0\)
\(\Leftrightarrow x\le\dfrac{3}{2}\)
b/ ĐKXĐ : \(3x+4\ge0\)
\(\Leftrightarrow x\ge-\dfrac{4}{3}\)
c/ Căn thức \(\sqrt{1+x^2}\) luôn được xác định với mọi x
d/ ĐKXĐ : \(-\dfrac{3}{3x+5}\ge0\)
\(\Leftrightarrow3x+5< 0\)
\(\Leftrightarrow x< -\dfrac{5}{3}\)
e/ ĐKXĐ : \(\dfrac{2}{x}\ge0\Leftrightarrow x>0\)
P.s : không chắc lắm á!
Điều kiện xác định : x > 0, x ≠4. Tính giá trị biểu thức \(\dfrac{x+1}{\sqrt{x+2}-1}=3\)
\(\dfrac{x+1}{\sqrt{x+2}-1}=3\left(đk:x\ge-2;x\ne-1\right)\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(\sqrt{x+2}+1\right)}{\left(\sqrt{x+2}\right)^2-1}=3\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(\sqrt{x+2}+1\right)}{x+1}=3\)
\(\Leftrightarrow\sqrt{x+2}+1=3\)
\(\Leftrightarrow x+2=4\) \(\Leftrightarrow x=2\) (tm)
Vậy x=2