cm biểu thức không phụ thuộc vào biến
a) y.(y3+y2-y-2)-(y2-2).(y2+y+1)
b) (2x+3).(4x2-6x+9)-2(4x3-1)
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x
P= (x+1)3 - (x+1)3 - [ (x-1)2 +(x+1)2]
Q= (2x-y)(4x2 +2xy+y2)+(2x+y)(4x2-2xy+y2)-16x3
Lời giải:
$P=(x+1)^3-(x+1)^3-[(x-1)^2+(x+1)^2]$
$=-[(x-1)^2+(x+1)^2]=-[(x^2-2x+1)+(x^2+2x+1)]=-2(x^2+1)$ phụ thuộc vào giá trị của biến nhé. Bạn xem lại đề.
$Q=(2x)^3-y^3+(2x)^3+y^3-16x^3$
$=8x^3-y^3+8x^3+y^3-16x^3=(8x^3+8x^3-16x^3)+(-y^3+y^3)=0+0=0$ không phụ thuộc vào giá trị của biến (đpcm)
$P=(x+1)^3-(x-1)^3-3[(x-1)^2+(x+1)^2]$
$=(x^3+3x^2+3x+1)-(x^3-3x^2+3x-1)-3[(x^2-2x+1)+(x^2+2x+1)]$
$=6x^2+2-3(2x^2+1)=3(2x^2+1)-3(2x^2+1)=0$ là giá trị không phụ thuộc vào giá trị của biến.
CM biểu thức không phụ thuộc vào x: 2(x3+y3)-3(x2+y2) với x+y=1.
\(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left[\left(x+y\right)^2-2xy\right]\)
\(=2\left(x^2-xy+y^2\right)-3\left(1-2xy\right)\)
\(=2x^2-2xy+2y^2-3+6xy\)
\(=2x^2+4xy+2y^2-3\)
chứng minh các biểu thức sau ko phụ thuộc vào x
A, (2x+3)(4x2-6x+9)-2(4x3-1)
b, (4x3-1)-(4x-3)(16x2+3)
c, 2(x3y3)-3(x2y2)vs x+y=1
Chứng minh rằng giá trị của các biểu thức sau ko phụ thuộc vào biến:
a) y.(x2-y2).(x2+y2)-y.(x4-y4)
b) (\(\dfrac{1}{3}\)+2x).(4x2-\(\dfrac{2}{3}\)x+\(\dfrac{1}{9}\))-(8x3-\(\dfrac{1}{27}\))
c) (x-1)3-(x-1).(x2+x+1)-3.(1-x).x
a: Ta có: \(y\left(x^2-y^2\right)\cdot\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)
\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}\)
\(=\dfrac{2}{27}\)
c: Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
Chứng tỏ rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến:2x + 3)(4x2 – 6x + 9) – 2(4x3 – 1) + 8
\(=8x^3+27-8x^3+2+8=37\left(đpcm\right)\)
chứng minh các biểu thức sau ko phụ thuộc vào x
A, (2x+3)(4x2-6x+9)-2(4x3-1)
b, (4x3-1)-(4x-3)(16x2+3)
c, 2(x3y3)-3(x2y2)vs x+y=1
Giúp mình vs ạ mình cảm ơn nhiều
a: Ta có: \(A=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3+27-8x^3+2\)
=29
b: Ta có: \(B=\left(64x^3-1\right)-\left(4x-3\right)\left(16x^2+3\right)\)
\(=64x^3-1-64x^3-12x-48x^2+9\)
\(=-12x+8\)
c: Ta có: \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left(x^2+xy+y^2\right)-3\left(-2xy\right)\)
\(=2x^2+2xy+2y^2+6xy\)
\(=2x^2+8xy+2y^2\)
a.P=(5x2-2xy+y2)-(x2+y2)-(4x2-5xy+1)
b. chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến x:
(x2-5x+4)(2x+3)-(2x2-x-10)(x-3)
`# \text {04th5}`
`a.`
`P = (5x^2 - 2xy + y^2) - (x^2 + y^2) - (4x^2 - 5xy + 1)`
`= 5x^2 - 2xy + y^2 - x^2 - y^2 - 4x^2 + 5xy - 1`
`= (5x^2 - x^2 - 4x^2) + (-2xy + 5xy) + (y^2 - y^2) - 1`
`= 3xy - 1`
`b.`
\((x^2-5x+4)(2x+3)-(2x^2-x-10)(x-3)\)
`= x^2(2x + 3) - 5x(2x + 3) + 4(2x + 3) - [ 2x^2(x - 3) - x(x - 3) - 10(x - 3)]`
`= 2x^3 + 3x^2 - 10x^2 - 15x + 8x + 12 - (2x^3 - 6x^2 - x^2 + 3x - 19x + 30)`
`= 2x^3 -7x^2 - 7x + 12 - (2x^3 - 7x^2 - 7x + 30)`
`= 2x^3 - 7x^2 - 7x + 12 - 2x^3 + 7x^2 + 7x -30`
`= -30`
Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.
:Các biểu thức sau không phụ thuộc vào giá trị của biến đúng hay sai :
a/ 2(2x+x2)-x2(x+2)+(x3-4x+3) b/ x(x2+x+1)-x2(x+1) –x+5
c/ 3x(x-2)-5x(x-1)-8(x2-3) d/ 2y(y2+y+1)-2y2(y+1)-2(y+10)
1. Rút gọn biểu thức:
a. (2x-3)(4x2+6x+9)-2x(4x2-1)
b.(x+y)2+2(x+y)(x-y)+(x-y)2
2.Phân tích đa thức sau thành nhân tử:
a. 2x2y+4xy+2y c. x2-8x+7
b.9x2+6xy-4z2+y2 d. x3+4x2+x-6
1b.=2((x+y)+(x+y)(x-y)+(x-y))=2(x2-y2+x+y+x-y)=2(x2-y2+2x)=2x2-2y2+4x
2a.=4xy+4xy+2y=8xy+2y=2y(4x+1)
b.=(3x)2+2.3x.y+y2-(2z)2=(3x+y)2-(2z)2=(3x+y-2z)(3x+y+2z)
c.=x2-x-7x+7=x(x-1)-7(x-1)=(x-1)(x-7)
\(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)^2\)
\(=\left(2x\right)^2\)
\(=4x^2\)
hk tốt
^^
Bài 3: Chứng minh rằng biểu thức sau ko phụ thuộc vào biểu thức
A=(x-5)(2x+3)-2x(x-3)+x+7
B=4(y-6)-y22(2+3y)+y(5y-4)+3y2
Bài 4:
a)4a2-16b2
b) 4x2-4x+1
c.1) (2x+y)2-x2
c,2) y2+_x-y2
d) (x-y)2-(2x-y)2
e) 8x3-y3
i)3x+6y+(x+2y)
j) ax-ay-x+y
k) 2x2-y+6x2y-3y2
Bài \(3\)
\(A=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(=2x^2+3x-10x-15-\left(2x^2-6x\right)+x+7\)
\(=2x^2+3x-10x-15-2x^2+6x+x+7\)
\(=\left(2x^2-2x^2\right)+\left(3x-10x+6x+x\right)+\left(-15+7\right)\)
\(=-8\)
Vậy biểu thức không phụ thuộc vào biến
\(B=4\left(y-6\right)-y^2\left(2+3y\right)+y\left(5y-4\right)+3y^2\)
Đề như này à?
Bài \(4\)
\(a,4a^2-16b^2=4\left(a^2-4b^2\right)=4\left(a-2b\right)\left(a+2b\right)\)
\(b,4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x+1\right)^2\)
\(c,\) ?
\(d,\left(x-y\right)^2-\left(2x-y\right)^2\\ =\left[\left(x-y\right)-\left(2x-y\right)\right]\left[\left(x-y\right)+\left(2x-y\right)\right]\\ =\left(x-y-2x+y\right)\left(x-y+2x-y\right)\\ =\left(-x\right)\left(3x-2y\right)\)
\(e,8x^3-y^3=\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(i,3x+6y+\left(x+2y\right)\\ =3\left(x+2y\right)+\left(x+2y\right)\\ =4\left(x+2y\right)\)
\(j,ax-ay-x+y=\left(ãx-ay\right)-\left(x-y\right)\\ =a\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(a-1\right)\)
`k,` `y` hay `y^2` ạ? vì nó mới phân tích được nhân tử.
Tớ xin làm câu k nhé!
\(k)2x^2-y+6x^2y-3y^2\\=(2x^2-y)+(6x^2y-3y^2)\\=(2x^2-y)+3y(2x^2-y)\\=(2x^2-y)(1+3y)\)
#\(Toru\)
\(c)\\1)(2x+y)^2-x^2\\=(2x+y-x)(2x+y+x)\\=(x+y)(3x+y)\\2)?\)
Dấu _ là sao cậu?
#\(Toru\)