Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Tu Nguyen
Xem chi tiết
Nguyễn Đức Trí
27 tháng 7 2023 lúc 0:56

Ta có :

\(\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ca\right)\right]^2\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\left(1\right)\)

\(\Leftrightarrow a^4+b^4+c^4=4\left(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right)-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\left(2\right)\) (vì \(a+b+c=0\))

\(\left(1\right)+\left(2\right)\Rightarrow2\left(a^4+b^4+c^4\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)

\(\Rightarrow\left(a^4+b^4+c^4\right)=2\left(ab+bc+ca\right)^2\)

\(\Rightarrow dpcm\)

Nguyễn Thu Trà
Xem chi tiết
Sương Đặng
Xem chi tiết
Ngô Tấn Đạt
14 tháng 3 2018 lúc 15:50

\(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+c^2a^2\\ \Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2\left(ab^2c+abc^2+a^2bc\right)=a^2b^2+b^2c^2+c^2a^2\\ \Leftrightarrow2\left(ab^2c+abc^2+a^2bc\right)=0\\ \Leftrightarrow abc\left(a+b+c\right)=0\left(đpcm;a+b+c=0\right)\)

Nguyễn Tuấn Kiệt
Xem chi tiết
Chu Tuấn Minh
16 tháng 11 2019 lúc 20:42

Ta có : a + b + c = 0

( a + b + c )\(^2\) = 0

\(a^2+b^2+c^2+2ab+2bc+2ca=0\)

Nên : \(a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\)

\(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left(ab+bc+ca\right)^2\)

\(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\right)\)

\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+8ab^2c+8abc^2+8a^2bc\)

\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+8abc\left(b+c+a\right)\)

\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)

Lại có : \(2\left(ab+bc+ca\right)^2\)

\(=2\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc\right)\)

\(=2a^2b^2+2b^2c^2+2c^2a^2+4ab^2c+4abc^2+4a^2bc\)

\(=2a^2b^2+2b^2c^2+2c^2a^2+4abc\left(b+c+a\right)\)

\(=2a^2b^2+2b^2c^2+2c^2a^2\)

Vì : \(2a^2b^2+2b^2c^2+2c^2a^2=2a^2b^2+2b^2c^2=2c^2a^2\)

Vậy \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)

Khách vãng lai đã xóa
missing you =
Xem chi tiết
Hải Dương
Xem chi tiết
Akai Haruma
25 tháng 8 2017 lúc 17:21

Sửa lại đề: \(a+b+c=0\)

a) Ta có:

\(A=a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)\)

\(=[(a+b+c)^2-2(ab+bc+ac)]^2-2(a^2b^2+b^2c^2+c^2a^2)\)

\(=4(ab+bc+ac)^2-2(a^2b^2+b^2c^2+c^2a^2)\)

\(=4(ab+bc+ac)^2-2(a^2b^2+b^2c^2+c^2a^2)-4abc(a+b+c)\)

(do \(a+b+c=0\))

\(A=4(ab+bc+ac)^2-2[a^2b^2+b^2c^2+c^2a^2+2abc(a+b+c)]\)

\(=4(ab+bc+ac)^2-2(ab+bc+ac)^=2(ab+bc+ac)^2\)

Ta có đpcm

b) Ta có:

\(\frac{(a^2+b^2+c^2)^2}{2}=\frac{[(a+b+c)^2-2(ab+bc+ac)]^2}{2}=\frac{[-2(ab+bc+ac)]^2}{2}=2(ab+bc+ac)^2\)

Kết hợp với kết quả phần a ta có đpcm.

magic school
Xem chi tiết
Dương Lam Hàng
21 tháng 2 2018 lúc 19:41

Ta có: \(a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)

\(\Leftrightarrow a^2+2ab+b^2=c^2\)

\(\Rightarrow a^2+b^2-c^2=-2ab\)

\(\Rightarrow\left(a^2+b^2-c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2-b^2c^2-c^2a^2\right)\)

\(\Rightarrow a^4+b^4+c^4=\left(-2ab\right)^2-2a^2b^2+2b^2c^2+2c^2a^2=2\left(a^2b^2+b^2c^2+c^2a^2\right)\left(đpcm\right)\)

Nguyễn Thiều Công Thành
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Neet
1 tháng 10 2017 lúc 23:32

Fix đề: Cho a,b,c không âm. Chứng minh \(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\ge\dfrac{4}{ab+bc+ca}\)

Dự đoán điểm rơi sẽ có 1 số bằng 0.

Giả sử \(c=min\left\{a,b,c\right\}\) ( c là số nhỏ nhất trong 3 số) thì \(c\ge0\)

do đó \(ab+bc+ca\ge ab\)\(\dfrac{1}{\left(b-c\right)^2}\ge\dfrac{1}{b^2};\dfrac{1}{\left(c-a\right)^2}=\dfrac{1}{\left(a-c\right)^2}\ge\dfrac{1}{a^2}\)

BDT cần chứng minh tương đương

\(ab\left[\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\ge4\)

\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{a^2+b^2}{ab}\ge4\)

\(\Leftrightarrow\dfrac{ab}{\left(a-b\right)^2}+\dfrac{\left(a-b\right)^2}{ab}+2\ge4\)

BĐT trên hiển nhiên đúng theo AM-GM.

Do đó ta có đpcm. Dấu = xảy ra khi c=0 , \(\left(a-b\right)^2=a^2b^2\) ( và các hoán vị )

Neet
1 tháng 10 2017 lúc 23:18

a,b,c không âm