Chứng minh: sin(x+a)+sin(x+2a)+sin(x+3a)+...+sin(x+100x)=0
Chứng minh: sin (x + α) + sin (x + 2α) + sin(x + 3α) +...+ sin(x + 100α) = 0
Đề bài ko đúng, ví dụ với \(x=1;a=0\Rightarrow VT=100sin1>0\)
Chứng minh rằng:
a) \(sin\left(a+b\right).sin\left(a-b\right)=sin^2a-sin^2b=cos^2b-cos^2a\)
b) \(4sin\left(x+\dfrac{\Pi}{3}\right).sin\left(x-\dfrac{\Pi}{3}\right)=4sin^2x-3\)
c) \(sin\left(x+\dfrac{\Pi}{4}\right)-sin\left(x-\dfrac{\Pi}{4}\right)=\sqrt{2}cosx\)
d) \(\dfrac{1}{sin10^0}-\dfrac{\sqrt{3}}{cos10^0}=4\)
Chứng minh rằng với \(0^0\le x\le180^0\) ta có :
a) \(\left(\sin x+\cos x\right)^2=1+2\sin x\cos x\)
b) \(\left(\sin x-\cos x\right)^2=1-2\sin x\cos x\)
c) \(\sin^4x+\cos^4x=1-2\sin^2x\cos^2x\)
a) \(\left(sinx+cosx\right)^2=sin^2x+2sinxcosx+cos^2x\)\(=1+2sinxcosx\).
b) \(\left(sinx-cosx\right)^2=sin^2x-2sinxcosx+cos^2x\)\(=1-2sinxcosx\).
c) \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\)
\(=1-2sin^2xcos^2x\).
Chứng minh:
1.\(\dfrac{\cot^2x-\sin^2x}{\cot^2x-\tan^2x}=\sin^2x\cdot\cos^2x\)
2.\(\dfrac{1-\sin x}{\cos x}-\dfrac{\cos x}{1+\sin x}=0\)
3.\(\dfrac{\tan x}{\sin x}-\dfrac{\sin x}{\cot x}=\cos x\)
4.\(\dfrac{\tan x}{1-\tan^2x}\cdot\dfrac{\cot^2x-1}{\cot x}=1\)
5.\(\dfrac{1+\sin^2x}{1-\sin^2x}=1+2\tan^2x\)
Câu 1 đề sai, chắc chắn 1 trong 2 cái \(cot^2x\) phải có 1 cái là \(cos^2x\)
2.
\(\dfrac{1-sinx}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{\left(1-sinx\right)\left(1+sinx\right)-cos^2x}{cosx\left(1+sinx\right)}=\dfrac{1-sin^2x-cos^2x}{cosx\left(1+sinx\right)}\)
\(=\dfrac{1-\left(sin^2x+cos^2x\right)}{cosx\left(1+sinx\right)}=\dfrac{1-1}{cosx\left(1+sinx\right)}=0\)
3.
\(\dfrac{tanx}{sinx}-\dfrac{sinx}{cotx}=\dfrac{tanx.cotx-sin^2x}{sinx.cotx}=\dfrac{1-sin^2x}{sinx.\dfrac{cosx}{sinx}}=\dfrac{cos^2x}{cosx}=cosx\)
4.
\(\dfrac{tanx}{1-tan^2x}.\dfrac{cot^2x-1}{cotx}=\dfrac{tanx}{1-tan^2x}.\dfrac{\dfrac{1}{tan^2x}-1}{\dfrac{1}{tanx}}=\dfrac{tanx}{1-tan^2x}.\dfrac{1-tan^2x}{tanx}=1\)
5.
\(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+tan^2x=\dfrac{sin^2x+cos^2x}{cos^2x}+tan^2x\)
\(=tan^2x+1+tan^2x=1+2tan^2x\)
Biến đổi thành tích các biểu thức sau:
A = \(cos (x-30°) - cos (x - 60°)\)
B = \(1+cos x + cos 2x\)
C = \(4 cos^2x - 1\)
D = \(\sqrt{3} sin x - cos x\)
E = \(sin a + sin 2a + sin 3a + sin 4a\)
F = \(sin 70° + sin 50° - sin 20°\)
G = \(cos (60° + x) + cos (60° - x) + cos 3x\)
H = \(cos x + cos 2 x + cos 3 x\)
cho Sin x + Cos x = căn √2
a> Tính sin x . cos x
b> Tính sin x - cos x
c> Tính sin x , cos x
a: \(sinx+cosx=\sqrt{2}\)
=>\(\left(sinx+cosx\right)^2=2\)
=>\(1+2\cdot sinx\cdot cosx=2\)
=>\(2\cdot sinx\cdot cosx=1\)
=>\(sinx\cdot cosx=\dfrac{1}{2}\)
b: \(\left(sinx-cosx\right)^2=\left(sinx+cosx\right)^2-4\cdot sinx\cdot cosx\)
\(=2-4\cdot\dfrac{1}{2}=2-2=0\)
=>\(sinx-cosx=0\)
c: \(sinx-cosx=0\)
\(sinx+cosx=\sqrt{2}\)
Do đó: \(sinx=cosx=\dfrac{\sqrt{2}}{2}\)
Ta có:
\(r^2+p^2+4Rr=\left(\dfrac{S}{p}\right)^2+p^2+\dfrac{abc}{S}.\dfrac{S}{p}\)
\(=\dfrac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}+p^2+\dfrac{abc}{p}\)
\(=\dfrac{p^3+\left(ab+bc+ac\right)p-p^2\left(a+b+c\right)-abc+p^3+abc}{p}\)
\(=ab+bc+ca\)
Do đó:
\(\dfrac{ab+bc+ca}{4R^2}=\dfrac{r^2+p^2+4Rr}{4R^2}\)
\(\Leftrightarrow sinAsinB+sinBsinC+sinCsinA=\dfrac{r^2+p^2+4Rr}{4R^2}\)\(\left(đpcm\right)\)
bạn giải thích chi tiết đoạn này hộ mình được ko ạ
p^3+(ab+bc+ac)p−p^2(a+b+c)−abc+p^3+abc/p =ab+bc+ca
Chứng minh:
\(\sin^2\left(x\right)+sin^2\left(60^0-x\right)+sinx.sin\left(60^0-x\right)=\dfrac{3}{4}\)
sin^2x+sin^2(60-x)+sinx*sin(60 độ-x)
\(=sin^2x+\left[sin60\cdot cosx-sinx\cdot cos60\right]^2+sinx\cdot\left[sin60\cdot cosx-sinx\cdot cos60\right]\)
\(=sin^2x+\left[-\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx\right]^2+sinx\left[\dfrac{-1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx\right]\)
\(=sin^2x+\dfrac{1}{4}sin^2x-\dfrac{\sqrt{3}}{2}\cdot sinx\cdot cosx+\dfrac{3}{4}\cdot cos^2x-\dfrac{1}{2}\cdot sin^2x+\dfrac{\sqrt{3}}{2}\cdot sinx\cdot cosx\)
\(=\dfrac{5}{4}sin^2x+\dfrac{3}{4}\cdot cos^2x-\dfrac{1}{2}\cdot sin^2x\)
=3/4*(sin^2x+cos^2x)=3/4
Chứng minh đẳng thức:
\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}=\sin x+\cos x\)
\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}\)
\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\frac{\sin^2x-\cos^2x}{\cos^2x}}\)
\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\cos^2x}{\sin x-\cos x}=\sin x+\cos x\)
Xong