sin^2x+sin^2(60-x)+sinx*sin(60 độ-x)
\(=sin^2x+\left[sin60\cdot cosx-sinx\cdot cos60\right]^2+sinx\cdot\left[sin60\cdot cosx-sinx\cdot cos60\right]\)
\(=sin^2x+\left[-\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx\right]^2+sinx\left[\dfrac{-1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx\right]\)
\(=sin^2x+\dfrac{1}{4}sin^2x-\dfrac{\sqrt{3}}{2}\cdot sinx\cdot cosx+\dfrac{3}{4}\cdot cos^2x-\dfrac{1}{2}\cdot sin^2x+\dfrac{\sqrt{3}}{2}\cdot sinx\cdot cosx\)
\(=\dfrac{5}{4}sin^2x+\dfrac{3}{4}\cdot cos^2x-\dfrac{1}{2}\cdot sin^2x\)
=3/4*(sin^2x+cos^2x)=3/4