Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tú Nguyễn
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
An Nhiên
Xem chi tiết
Nhan Thị Thảo Vy
Xem chi tiết
Nguyễn Ngọc Lộc
25 tháng 3 2020 lúc 19:37

b, Ta có : \(\left\{{}\begin{matrix}x^2-xy+3y^2+2x-5y-4=0\\x+2y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x^2-xy+3y^2+2x-5y=4\\x+2y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x^2-xy+3y^2+2x-5y=x+2y\\x+2y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x^2-xy+3y^2+2x-5y-x-2y=0\\x+2y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x^2-xy+3y^2+x-7y=0\\x+2y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x^2+2xy+3y^2+1,5xy-4,5xy+x-7y=0\\x+2y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x\left(x+2y\right)+1,5y\left(x+2y\right)-4,5xy+x-7y=0\\x+2y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}4x+6y-4,5xy+x-7y=0\\x+2y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5x-y-4,5xy=0\\x+2y=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5\left(4-2y\right)-y-4,5y\left(4-2y\right)=0\\x=4-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}20-10y-y-18y+9y^2=0\\x=4-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}20-29y+9y^2=0\\x=4-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}9y^2-9y-20y+20=0\\x=4-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\left(9y-20\right)\left(y-1\right)=0\\x=4-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}y=1\\y=\frac{20}{9}\end{matrix}\right.\\x=4-2y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}y=1\\y=\frac{20}{9}\end{matrix}\right.\\\left[{}\begin{matrix}x=4-2.1=4-2=2\\x=4-\frac{2.20}{9}=-\frac{4}{9}\end{matrix}\right.\end{matrix}\right.\)

Vậy phương trình có 2 nghiệm ( x; y ) = \(\left(2;1\right)\), ( x; y ) = \(\left(-\frac{4}{9};\frac{20}{9}\right)\)

Khách vãng lai đã xóa
Nguyễn Ngọc Lộc
25 tháng 3 2020 lúc 20:40

a, Ta có : \(\left\{{}\begin{matrix}2x-y=5\\x^2+xy+y^2=7\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=2x-5\\x^2+x\left(2x-5\right)+\left(2x-5\right)^2=7\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=2x-5\\x^2+2x^2-5x+4x^2-20x+25=7\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=2x-5\\7x^2-25x+18=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=2x-5\\7x^2-7x-18x+18=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=2x-5\\\left(7x-18\right)\left(x-1\right)=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=2x-5\\\left[{}\begin{matrix}x=1\\x=\frac{18}{7}\end{matrix}\right.\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}y=2.1-5=2-5=-3\\y=2.\left(\frac{18}{7}\right)-5=\frac{1}{7}\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\x=\frac{18}{7}\end{matrix}\right.\end{matrix}\right.\)

Vậy hệ phương trình trên có 2 nghiệm là ( x; y ) = ( 1; -3 ) , ( x; y ) \(=\left(\frac{18}{7};\frac{1}{7}\right)\)

Khách vãng lai đã xóa
Phạm Minh Quang
Xem chi tiết
Lê Thị Thục Hiền
28 tháng 11 2019 lúc 18:56

1,ĐK: \(x,y\ne-2\)

HPT<=> \(\left\{{}\begin{matrix}x\left(x+2\right)+y\left(y+2\right)=\left(x+2\right)\left(y+2\right)\left(1\right)\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x^2\left(x+2\right)^2+2xy\left(x+2\right)\left(y+2\right)+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)

=> \(2xy\left(x+2\right)\left(y+2\right)=0\)

<=>\(2xy=0\) (do x+2 và y+2 \(\ne0\))

<=> \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Tại x=0 thay vào (1) có: \(y\left(y+2\right)=2\left(y+2\right)\) <=> y= \(\pm2\) => y=2 (vì y khác -2)

Tại y=0 thay vào (1) có: \(x\left(x+2\right)=2\left(x+2\right)\) => x=2

Vậy HPT có 2 nghiệm duy nhất (2,0),(0,2)

2, ĐK: \(y\ne-1\)

HPT <=> \(\left\{{}\begin{matrix}x^2=2\left(x+3\right)\left(y+1\right)\left(1\right)\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)

=> \(\frac{6\left(3+x\right)\left(y+1\right)}{y+1}=4-x\)

<=> 6(x+3)=4-x

<=> \(14=-7x\)

<=> \(x=-2\) thay vào (1) có \(4=2\left(y+1\right)\)

<=>y=1\(\)( tm)

Vậy hpt có một nghiệm duy nhất (-2,1)

3,\(\left\{{}\begin{matrix}x^2-y=y^2-x\left(1\right)\\x^2-x=y+3\left(2\right)\end{matrix}\right.\)

PT (1) <=> \(\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)

<=> (x-y)(x+y+1)=0

<=>\(\left[{}\begin{matrix}x=y\\y=-x-1\end{matrix}\right.\)

Tại x=y thay vào (2) có \(y^2-y=y+3\) <=> \(y^2-2y-3=0\) <=> (y-3)(y+1)=0 <=> \(\left[{}\begin{matrix}y=3\\y=-1\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Tại y=-1-x thay vào (2) có: \(x^2-x=-1-x+3\) <=> \(x^2=2\) <=> \(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\) => \(\left[{}\begin{matrix}y=-1-\sqrt{2}\\y=-1+\sqrt{2}\end{matrix}\right.\)

Vậy hpt có 4 nghiệm (3,3),(-1,-1), ( \(\sqrt{2},-1-\sqrt{2}\)),( \(-\sqrt{2},-1+\sqrt{2}\))

4,\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\left(1\right)\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\left(2\right)\end{matrix}\right.\)(đk:\(x\ne0,y\ne0\))

<=> \(\left\{{}\begin{matrix}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)=\frac{9}{2}\\\left(y+\frac{1}{y}\right)\left(x+\frac{1}{x}\right)=5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+\frac{1}{x}=u\\y+\frac{1}{y}=v\end{matrix}\right.\)

\(\left\{{}\begin{matrix}u+v=\frac{9}{2}\\uv=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\v\left(\frac{9}{2}-v\right)=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left(v-\frac{5}{2}\right)\left(v-2\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left[{}\begin{matrix}v=\frac{5}{2}\\v=2\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\\\left[{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

Tại \(\left\{{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=2\\y+\frac{1}{y}=\frac{5}{2}\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)\left(y-\frac{1}{2}\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=1\\\left[{}\begin{matrix}y=2\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Tại \(\left\{{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=\frac{5}{2}\\y+\frac{1}{y}=2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\left(x-2\right)\left(x-\frac{1}{2}\right)=0\\\left(y-1\right)^2=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\\y=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left[{}\begin{matrix}x=\frac{1}{2}\\y=1\end{matrix}\right.\end{matrix}\right.\)

Vậy hpt có 4 nghiệm (1,2),( \(1,\frac{1}{2}\)) ,( 2,1),(\(\frac{1}{2},1\)).

Khách vãng lai đã xóa
Võ Hồng Phúc
28 tháng 11 2019 lúc 20:09

10.

\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2xy-xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(2x-y+1\right)=0\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\y=2x+1\end{matrix}\right.\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=y^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=y^2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=x^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=\left(2x+1\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\3x\left(x+1\right)=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=1\\\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2x+1\\x=0\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x=-1\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Khách vãng lai đã xóa
Phạm Minh Quang
28 tháng 11 2019 lúc 12:59
Khách vãng lai đã xóa
Ánh Dương
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 10 2019 lúc 18:49

a/ \(\left\{{}\begin{matrix}x+y+xy=3\\xy\left(x+y\right)=2\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=3\\ab=2\end{matrix}\right.\)

\(\Rightarrow\) Theo Viet đảo, a và b là nghiệm của: \(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=1\\xy=2\end{matrix}\right.\) theo Viet đảo, x và y là nghiệm của:

\(t^2-t+2=0\) (vô nghiệm)

TH2: x và y là nghiệm của: \(t^2-2t+1=0\Rightarrow t=1\Rightarrow x=y=1\)

b/ \(\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=2xy+4\\x+y=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=8\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm: \(t^2-6t+8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=4\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(4;2\right);\left(2;4\right)\)

Nguyễn Việt Lâm
2 tháng 10 2019 lúc 18:56

c/ Trừ vế với vế:

\(x^2-y^2-2x+2y=y-x\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)-3\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-3\right)=0\Rightarrow\left[{}\begin{matrix}y=x\\y=3-x\end{matrix}\right.\)

Thay vào pt đầu:

\(\left[{}\begin{matrix}x^2-2x=x\\x^2-2x=3-x\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\left(x-3\right)=0\\x^2-x-3=0\end{matrix}\right.\) \(\Rightarrow...\)

d/ Sao có t từ đâu vào đây thế này? :(

e/ \(\Leftrightarrow\left\{{}\begin{matrix}4x^2-2y^2=2\\xy+x^2=2\end{matrix}\right.\) \(\Rightarrow3x^2-xy-2y^2=0\)

\(\Rightarrow\left(x-y\right)\left(3x+2y\right)=0\) \(\Rightarrow\left[{}\begin{matrix}y=x\\y=-\frac{3}{2}x\end{matrix}\right.\)

Thay vào pt đầu: \(\left[{}\begin{matrix}2x^2-x^2=1\\2x^2-\left(-\frac{3}{2}x\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\)

Ánh Dương
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Vũ Trung Đức
22 tháng 7 2020 lúc 20:56
https://i.imgur.com/ePPkgoo.jpg
Vũ Trung Đức
22 tháng 7 2020 lúc 20:57
https://i.imgur.com/0lQ1nJV.png
Vũ Trung Đức
22 tháng 7 2020 lúc 20:57
https://i.imgur.com/s6RzLH6.jpg
Hằng Nguyễn Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 8 2022 lúc 13:49

a: Đặt |x-6|=a, |y+1|=b

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

=>|x-6|=1 và |y+1|=1

\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)

b: Đặt |x+y|=a, |x-y|=b

Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)

=>HPTVN

c: Đặt |x+y|=a, |x-y|=b

Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)

=>|x+y|=2 và x=y

=>|2x|=2 và x=y

=>x=y=1 hoặc x=y=-1