Tìm m để phương trình \(mx^2-2\left(m-1\right)x+\left(m-2\right)=0\) có hai nghiệm trái dấu
Câu 2 : Cho phương trình \(mx^2+2\left(m-2\right)x+m-3=0\left(mlàthamsố\right)\)
\(a)\) Tìm các giá trị của tham số m để phương trình có hai nghiệm trái dấu.
\(b)\) Tìm các giá trị của tham số m để phương trình có hai nghiệm \(x_1;x_2\) thoả mãn : \(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=2.\)
a) Điều kiện để phương trình có hai nghiệm trái dấu là :
\(\left\{{}\begin{matrix}m\ne0\\\Delta phẩy>0\\x_1.x_2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2+4m+4-m^2+3m>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\)
\(\Rightarrow0< m< 3\)
b) Để phương trình có 2 nghiệm phân biệt thì : \(\Delta\) phẩy > 0
\(\Rightarrow m< 4\)
Ta có : \(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=2\)
\(\Leftrightarrow x_1^2+x_2^2=2x_1^2.x_2^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=2x_1^2.x_2^2\)
Theo Vi-ét ta có : \(x_1+x_2=\dfrac{-2\left(m-2\right)}{m};x_1.x_2=\dfrac{m-3}{m}\)
\(\Rightarrow\dfrac{4\left(m-2\right)^2}{m^2}-2.\dfrac{m-3}{m}=2.\dfrac{\left(m-3\right)^2}{m^2}\)
\(\Leftrightarrow m=1\left(tm\right)\)
Vậy...........
a) \(mx^2+2\left(m-2\right)x+m-3=0\left(1\right)\)
Để \(\left(1\right)\) có hai nghiệm trái dấu \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-2\right)^2-m\left(m-3\right)>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4m+4-m^2-3m>0\\0< m< 3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7m+4>0\\0< m< 3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{4}{7}\\0< m< 3\end{matrix}\right.\) \(\Leftrightarrow0< m< 3\)
b) \(\dfrac{1}{x^2_1}+\dfrac{1}{x^2_2}=2\Leftrightarrow\dfrac{x^2_1+x_2^2}{x^2_1.x^2_2}=2\) \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-4x_1.x_2}{x^2_1.x^2_2}=2\)
\(\Leftrightarrow\left(\dfrac{x_1+x_2}{x_1.x_2}\right)^2-\dfrac{4}{x_1.x_2}=2\)
\(\Leftrightarrow\left(\dfrac{\dfrac{2\left(2-m\right)}{m}}{\dfrac{m-3}{m}}\right)^2-\dfrac{4}{\dfrac{m-3}{m}}=2\)
\(\Leftrightarrow\left(\dfrac{2\left(2-m\right)}{m-3}\right)^2-\dfrac{4m}{m-3}=2\)
\(\Leftrightarrow4\left(2-m\right)^2-4m\left(m-3\right)=2.\left(m-3\right)^2\)
\(\Leftrightarrow4\left(4-4m+m^2\right)-4m^2+12=2.\left(m^2-6m+9\right)\)
\(\Leftrightarrow16-16m+4m^2-4m^2+12=2m^2-12m+18\)
\(\Leftrightarrow2m^2+4m-10=0\)
\(\Leftrightarrow m^2+2m-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1+\sqrt[]{6}\\m=-1-\sqrt[]{6}\end{matrix}\right.\) \(\Leftrightarrow m=-1+\sqrt[]{6}\left(\Delta>0\Rightarrow m>-\dfrac{4}{7}\right)\)
Cho phương trình \(x^2-2\left(m-1\right)x-\left(2m+1\right)=0\left(1\right)\)Tìm m để phương trình có 2 nghiệm trái dấu
Pt có 2 nghiệm trái dấu
`<=>ac<0`
`<=>2m+1>0`
`<=>m> -1/2`
Để pt(1) có hai nghiệm trái dấu thì -(2m+1)<0
\(\Leftrightarrow2m+1>0\)
\(\Leftrightarrow2m>-1\)
hay \(m>-\dfrac{1}{2}\)
Cho phương trình \(mx^2+\left(m-1\right)x+m-1=0\)
a) Tìm m để phương trình vô nghiệm.
b) Tìm m để phương trình có hai nghiệm trái dấu.
c) Tìm m để phương trình có hai nghiệm x1; x2 sao cho \(x_1^2+x_2^2-3>0\)
a. Với \(m=0\Rightarrow-x-1=0\Rightarrow x=-1\) pt có nghiệm (ktm)
Với \(m\ne0\) pt vô nghiệm khi:
\(\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\)
\(\Leftrightarrow\left(m-1\right)\left(-3m-1\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
b. Phương trình có 2 nghiệm trái dấu khi \(ac< 0\)
\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)
c. Từ câu a ta suy ra pt có 2 nghiệm khi \(\left\{{}\begin{matrix}m\ne0\\-\dfrac{1}{3}\le m\le1\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-m}{m}\\x_1x_2=\dfrac{m-1}{m}\end{matrix}\right.\)
\(x_1^2+x_2^2-3>0\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3>0\)
\(\Leftrightarrow\left(\dfrac{1-m}{m}\right)^2-2\left(\dfrac{m-1}{m}\right)-3>0\)
Đặt \(\dfrac{m-1}{m}=t\Rightarrow t^2-2t-3>0\Rightarrow\left[{}\begin{matrix}t>3\\t< -1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-1}{m}>3\\\dfrac{m-1}{m}< -1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{-2m-1}{m}>0\\\dfrac{2m-1}{m}< 0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)
Kết hợp điều kiện có nghiệm \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}\le m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)
Cho phương trình\(\left(m-1\right)x^2-2\left(m-3\right)x+m-4\) . Tìm m để phương trình có hai nghiệm
a) Trái dấu
b) Hai nghiệm dương
c) Hai nghiệm âm
a.
Phương trình có 2 nghiệm trái dấu khi:
\(ac< 0\Leftrightarrow\left(m-1\right)\left(m-4\right)< 0\)
\(\Rightarrow1< m< 4\)
b.
Phương trình có 2 nghiệm dương khi (ko có chữ phân biệt?):
\(\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m-3\right)^2-\left(m-1\right)\left(m-4\right)\ge0\\x_1+x_2=\dfrac{2\left(m-3\right)}{m-1}>0\\x_1x_2=\dfrac{m-4}{m-1}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\le5\\\left[{}\begin{matrix}m>3\\m< 1\end{matrix}\right.\\\left[{}\begin{matrix}m>4\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< 1\\4< m\le5\end{matrix}\right.\)
c.
Phương trình có 2 nghiệm âm khi:
\(\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m-3\right)^2-\left(m-1\right)\left(m-4\right)\ge0\\x_1+x_2=\dfrac{2\left(m-3\right)}{m-1}< 0\\x_1x_2=\dfrac{m-4}{m-1}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\le5\\1< m< 3\\\left[{}\begin{matrix}m>4\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
Cho phương trình:\(mx^2+2\left(m-2\right)x+m-3=0\)
1)Xác định m để phương trình có 2 nghiệm trái dấu
2)Xác định m để phương trình có 2 nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn
3)Tìm hệ thức 2 nghiệm không phụ thuộc vào m
4)Tìm min A biết A=\(x_1^2+x_2^2\)
1) Để phương trình có hai nghiệm trái dấu thì
\(\left\{{}\begin{matrix}m\ne0\\\Delta'>0\\P< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\-m+4>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\m< 4\\m< 3\end{matrix}\right.\) \(\Rightarrow\) 0\(\ne\)m<3.
Vậy: với 0\(\ne\)m<3, phương trình đã cho có hai nghiệm trái dấu.
2) Thừa hưởng từ kết quả câu 1, để nghiệm âm có giá trị tuyệt đối lớn hơn thì S<0 \(\Leftrightarrow\) \(\dfrac{-2\left(m-2\right)}{m}\)<0 \(\Leftrightarrow\) m>2.
Vậy: với 2<m<3, phương trình đã cho có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn.
3) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m-2\right)}{m}\\x_1x_2=\dfrac{m-3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4}{m}-2\\x_1x_2=1-\dfrac{3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\dfrac{x_1+x_2+2}{4}=\dfrac{1}{m}\\\dfrac{1-x_1x_2}{3}=\dfrac{1}{m}\end{matrix}\right.\) \(\Rightarrow\) 3x1+3x2+4x1x2+2=0.
4) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):
A=x12+x22=(x1+x2)2-2x1x2=\(\left(\dfrac{-2\left(m-2\right)}{m}\right)^2-2.\dfrac{m-3}{m}\)=\(2-\dfrac{10}{m}+\dfrac{16}{m^2}\)=\(\left(\dfrac{4}{m}-\dfrac{5}{4}\right)^2+\dfrac{7}{16}\)\(\ge\dfrac{7}{16}\).
Dấu "=" xảy ra khi x=16/5 (nhận).
Vậy minA=7/16 tại m=16/5.
tìm m để phương trình \(x^{2+}2\left(m-1\right)x+3m-2=0\) có 2 nghiệm trái dấu x1, x2 thỏa mãn \(\dfrac{1}{x_1}-3=\left|\dfrac{1}{x_2}\right|\)
Để pt có 2 nghiệm trái dấu \(\Leftrightarrow3m-2< 0\Leftrightarrow m< \dfrac{2}{3}\)
Nếu \(x_1< 0\) thì \(\dfrac{1}{x_1}-3< 0\) trong khi \(\left|\dfrac{1}{x_2}\right|>0\Rightarrow\) không thỏa mãn
Vậy \(x_1>0;x_2< 0\)
Do đó:
\(\dfrac{1}{x_1}-3=\left|\dfrac{1}{x_2}\right|=-\dfrac{1}{x_2}\)
\(\Leftrightarrow\dfrac{1}{x_1}+\dfrac{1}{x_2}=3\Leftrightarrow x_1+x_2-3x_1x_2=0\)
\(\Leftrightarrow-2\left(m-1\right)-3\left(3m-2\right)=0\)
\(\Leftrightarrow m=...\)
Cho hàm số \(y=\dfrac{2}{3}x^3-\left(m+1\right)x^2+3\left(m+1\right)x+2\)
Tìm m để phương trình y'=0 thỏa mãn
a, có 2 nghiệm
b, có 2 nghiệm trái dấu
a: y'=2/3*3x^2-2x(m+1)+3(m+1)
=x^2-x(2m+2)+3m+3
y'=0
Δ=(2m+2)^2-4(3m+3)=4m^2+8m+4-12m-12=4m^2-4m-8
Để phương trình có hai nghiệm thì 4m^2-4m-8>=0
=>m^2-m-2>=0
=>m>=2 hoặc m<=-1
b: y'=0 có hai nghiệm trái dấu
=>3m+3<0
=>m<-1
cho phương trình \(^{x^2-2\left(m+1\right)x+m^2-2=0}\)
a) Tìm m để phuong trình có hai nghiệm trái dấu
b) Tìm m để phương trình có hai nghiệm dương phân biệt
Tìm m để hai phương trình sau có nghiệm chung
a \(2x^2+\left(3m-1\right)x-3=0\) và \(6x^2-\left(2m-1\right)x-1=0\)
b \(x^2-mx+2m+1=0\) và \(mx^2-\left(2m+1\right)x-1=0\)
câu a
Gọi x0 là nghiệm chung của PT(1) và (2)
\(\Rightarrow\left\{{}\begin{matrix}2x^2_0+\left(3m-1\right)x_0-3=0\left(\times3\right)\\6.x^2_0-\left(2m-1\right)x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x^2_0+3\left(3m-1\right)x_0-9=0\left(1\right)\\6x^2_0-\left(2m-1\right)x_0-1=0\left(2\right)\end{matrix}\right.\) Lấy (1)-(2) ,ta được
PT\(\Leftrightarrow3\left(3m-1\right)-9+\left(2m-1\right)+1\)=0
\(\Leftrightarrow9m-3-9+2m-1+1=0\Leftrightarrow11m-12=0\)
\(\Leftrightarrow m=\dfrac{12}{11}\)