Tính giá trị của biểu thức:
a) \(32-6.\left(8-2^3\right)+18;\)
b) \(\left(3.5-9\right)^3.\left(1+2.3\right)^2+4^2.\)
* Tính giá trị của biểu thức:
a. A=\(2\sqrt{2}-3\sqrt{18}+4\sqrt{32}-\sqrt{50}\)
b. B=\(\sqrt{\left(1-\sqrt{5}\right)^2}+\sqrt{6+2\sqrt{5}}\)
c. C=\(\dfrac{1}{2-\sqrt{6}}+\dfrac{1}{2+\sqrt{6}}\)
\(a,A=2\sqrt{2}-9\sqrt{2}+16\sqrt{2}-5\sqrt{2}\)
\(=4\sqrt{2}\)
\(b,B=\left|1-\sqrt{5}\right|+\sqrt{5+2\sqrt{5}+1}\)
\(=\left|1-\sqrt{5}\right|+\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\left|1-\sqrt{5}\right|+\left|\sqrt{5}+1\right|=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)
\(c,C=\dfrac{2+\sqrt{6}+2-\sqrt{6}}{\left(2+\sqrt{6}\right)\left(2-\sqrt{6}\right)}=\dfrac{4}{4-6}=-2\)
Lời giải:
a.
\(A=2\sqrt{2}-3\sqrt{18}+4\sqrt{32}-\sqrt{50}=2\sqrt{2}-9\sqrt{2}+16\sqrt{2}-5\sqrt{2}\)
\(=(2-9+16-5)\sqrt{2}=4\sqrt{2}\)
b.
\(B=\sqrt{(1-\sqrt{5})^2}+\sqrt{(\sqrt{5}+1)^2}=|1-\sqrt{5}|+|\sqrt{5}+1|=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)
c.
\(C=\frac{2+\sqrt{6}+2-\sqrt{6}}{(2-\sqrt{6})(2+\sqrt{6})}=\frac{4}{2^2-6}=-2\)
`a)A=2sqrt2-3sqrt{18}+4sqrt{32}-sqrt{50}`
`=2sqrt2-3sqrt{9.2}+4sqrt{16.2}-sqrt{25.2}`
`=2sqrt2-9sqrt2+16sqrt2-5sqrt2`
`=4sqrt2`
`b)B=sqrt{(1-sqrt5)^2}+sqrt{6+2sqrt5}`
`=sqrt5-1+sqrt{(sqrt5+1)^2}`
`=sqrt5-1+sqrt5+1=2sqrt5`
`c)1/(2-sqrt6)+1/(2+sqrt6)`
`=(2+sqrt6)/(4-6)+(sqrt6-2)/(6-4)`
`=(sqrt6-2-sqrt6-2)/2=-2`
Tính giá trị của biểu thức:
a) \(9 234:\left[3.3.\left(1+8^3\right)\right];\)
b) \(76-\left\{2.\left[2.5^2-\left(31-2.3\right)\right]\right\}+3.25.\)
a) 9 234 : [3 . 3. (1 + 83)] = 9 234 : [3 . 3 . (1 + 512)]
= 9 234 : [3 . 3 . 513] = 9 234 : 4617 = 2
b) 76 - {2 . [2 . 52 - (31 - 2 . 3)]} + 3 . 25
= 76 - {2 . [2 . 25 - (31 - 6)]} + 75
= 76 - {2 . [50 - 25]} + 75 = 76 - {2 . 25} + 75 = 76 - 50 + 75 = 101
a) 9 234 : [3 . 3. (1 + 83)] = 9 234 : [3 . 3 . (1 + 512)]
= 9 234 : [3 . 3 . 513] = 9 234 : 4617 = 2
b) 76 - {2 . [2 . 52 - (31 - 2 . 3)]} + 3 . 25
= 76 - {2 . [2 . 25 - (31 - 6)]} + 75
= 76 - {2 . [50 - 25]} + 75 = 76 - {2 . 25} + 75 = 76 - 50 + 75 = 10
Tính giá trị biểu thức:
A=(-16):(-8)+6(2021-2022)2019+2026
B=\(\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)...\left(1+\dfrac{1}{624}\right)\)
a: =2+6*(-1)^2019+2026
=2028-6
=2022
b: \(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot\dfrac{16}{15}...\cdot\dfrac{625}{624}\)
\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot\dfrac{4^2}{\left(4-1\right)\left(4+1\right)}...\cdot\dfrac{625}{\left(25-1\right)\left(25+1\right)}\)
\(=\dfrac{2\cdot3\cdot4\cdot...\cdot49}{1\cdot2\cdot3\cdot...\cdot48}\cdot\dfrac{2\cdot3\cdot4\cdot...\cdot49}{3\cdot4\cdot5\cdot...\cdot50}\)
\(=\dfrac{49}{1}\cdot\dfrac{2}{50}=\dfrac{98}{50}=\dfrac{49}{25}\)
Tính giá trị của biểu thức:
a) \(3^2.5^3+9^2;\)
b) \(8^3:4^2-5^2;\)
c) \(3^3.9^2-5^2.9+18:6.\)
a) 32 . 53 + 92 = 9 . 125 + 81
= 1 125 + 81 = 1 206
b) 83 : 42 - 52 = 512 : 16 - 25 = 32 - 25 = 7
c) 33 . 92 - 52.9 + 18 : 6 = 27 . 81 - 25 . 9 + 3
= 2 187 - 225 + 3 = 1 962 + 3 = 1 965
a) 32 . 53 + 92 = 9 . 125 + 81
= 1 125 + 81 = 1 206
b) 83 : 42 - 52 = 512 : 16 - 25 = 32 - 25 = 7
c) 33 . 92 - 52.9 + 18 : 6 = 27 . 81 - 25 . 9 + 3
= 2 187 - 225 + 3 = 1 962 + 3 = 1 965
Tính giá trị các biểu thức:
a.\(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\sqrt{3}\)
b.\(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
c.\(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)3\sqrt{6}\)
d.\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)
\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)
\(=33\sqrt{3}\cdot\sqrt{3}\)
=99
b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)
\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)
c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+18\sqrt{3}\)
d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)
\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)
a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)
\(=28.3+9.3-4.3=99\)
b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)
\(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)
d,Ta có:\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\sqrt{75\sqrt{2}}+5\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=15\sqrt{3\sqrt{2}}+20\sqrt{3\sqrt{2}}-16\sqrt{3\sqrt{2}}\)
\(=19\sqrt{3\sqrt{2}}\)
Tính giá trị của biểu thức
\(\left(4\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{4\sqrt{6}+8\sqrt{3}+4\sqrt{2}+18}-2\right)\)
\(=\left(4\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{12+4\sqrt{6}+2+8\sqrt{3}+4\sqrt{2}+4-2}\right)\\ =\left(4\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{\left(2\sqrt{3}+\sqrt{2}\right)^2+4\left(2\sqrt{3}+\sqrt{2}\right)+4-2}\right)\\ =\left(4\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{\left(2\sqrt{3}+\sqrt{2}+2\right)^2-2}\right)\\ =\left(4\sqrt{3}-2\sqrt{2}\right)\left(2\sqrt{3}+\sqrt{2}\right)=20\)
Tính giá trị biểu thức:
A= \(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\).
B=\(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
Lời giải:
\(\sqrt{2}A=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}\)
\(=|\sqrt{3}+1|-|\sqrt{3}-1|=\sqrt{3}+1-(\sqrt{3}-1)=2\)
$\Rightarrow A\geq \sqrt{2}$
\(B=2\sqrt{6}-4\sqrt{2}+(9+4\sqrt{2})-2\sqrt{6}=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}\)
\(=9\)
a)ta có:\(A^2=\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)\)=\(2+\sqrt{3}+2-\sqrt{3}-2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)
=\(4-2\sqrt{1}=4-2=2\)
\(\Rightarrow A=\pm\sqrt{2}\) mà A>0\(\Rightarrow A=\sqrt{2}\)
b)B=\(2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}\)=9
B 5.Tính giá trị của các biểu thức:
a) (\(\sqrt{12}\)-2\(\sqrt{108}\)+3\(\sqrt{75}\)).\(\sqrt{3}\) b)(3\(\sqrt{8}\)- 4\(\sqrt{32}\)+5\(\sqrt{18}\)):5
c)(\(\sqrt{20}\)-2\(\sqrt{45}\)+3\(\sqrt{125}\) ):\(\sqrt{5}\) d)(3\(\sqrt{7}\)-4\(\sqrt{28}\)+5\(\sqrt{343}\)).\(\dfrac{1}{10}\)
a: \(=\left(2\sqrt{3}-12\sqrt{3}+15\sqrt{3}\right)\cdot\sqrt{3}=5\sqrt{3}\cdot\sqrt{3}=15\)
b: \(=\left(6\sqrt{2}-16\sqrt{2}+15\sqrt{2}\right):5=\sqrt{2}\)
c: \(=\dfrac{\left(2\sqrt{5}-6\sqrt{5}+15\sqrt{5}\right)}{\sqrt{5}}=17-6=11\)
Tính giá trị của biểu thức:
a) \(3{x^2}y - \left( {3xy - 6{x^2}y} \right) + \left( {5xy - 9{x^2}y} \right)\) tại \(x = \frac{2}{3}\), \(y = - \frac{3}{4}\)
b) \(x\left( {x - 2y} \right) - y\left( {{y^2} - 2x} \right)\) tại \(x = 5\), \(y = 3\)
`a, = 3x^2y - 3xy + 6x^2y + 5xy - 9x^2y`
`= 2xy`.
Thay `x = 2/3; y = -3/4` vào BT:
`2 . 2/3 . -3/4 = -1.`
`b, x(x-2y) - y(y^2-2x)`
`= x^2 - 2xy - y^3 + 2xy`
`= x^2 - y^3`
Thay `x = 5; y =3` vào BT:
`= 5^2 - 3^3 = 25 - 27 = -2`
a) \(3x^2y-\left(3xy-6x^2y\right)+\left(5xy-9x^2y\right)\)
\(=3x^2y-3xy+6x^2y+5xy-9x^2y\)
\(=2xy\)
Thay \(x=\dfrac{2}{3},y=-\dfrac{3}{4}\) vào Bt ta có:
\(2\cdot\dfrac{2}{3}\cdot-\dfrac{3}{4}=-1\)
b) \(x\left(x-2y\right)-y\left(y^2-2x\right)\)
\(=x^2-2xy-y^3+2xy\)
\(=x^2-y^3\)
Thay \(x=5,y=3\) vào Bt ta có:
\(5^2-3^3=-3\)