Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thuần Mỹ
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 6 2023 lúc 9:11

x+y=10 và xy=9

=>x,y là các nghiệm của phương trình là:

a^2-10a+9=0

=>a=1 hoặc a=9

=>(x,y)=(1;9) hoặc (x,y)=(9;1)

CCDT
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 3 2021 lúc 18:30

Đặt \(P=xyz\le\dfrac{1}{4}\left(x+y\right)^2z=\dfrac{1}{4}\left(x+y\right)^2\left(2016-x-y\right)\)

Do \(\left\{{}\begin{matrix}x\ge2\\y\ge9\\z\ge1951\\x+y=2016-z\end{matrix}\right.\) \(\Rightarrow11\le x+y\le65\)

Đặt \(x+y=a\Rightarrow11\le a\le65\)

\(4P\le a^2\left(2016-a\right)=-a^3+2016a^2-8242975+8242975\)

\(4P\le\left(65-a\right)\left[\left(a^2-65^2\right)-1951\left(a-11\right)-144051\right]+8242975\le8242975\)

\(\Rightarrow P\le\dfrac{8242975}{4}\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=y=\dfrac{65}{2}\\z=1951\end{matrix}\right.\)

hnamyuh
2 tháng 3 2021 lúc 18:08

Áp dụng BĐT Cô-si với ba số x,y,z không âm :

\(\dfrac{x+y+z}{3}\ge\sqrt[3]{xyz}\\ \Rightarrow\dfrac{2016}{3}= 672\ge\sqrt[3]{xyz}\\ \Leftrightarrow xyz \le(672)^3\\ \)

Dấu = xảy ra khi x = y = z = 672

Vậy GTLN của xyz là 6723 khi x = y = z = 672

Nguyễn Thiện Chí
Xem chi tiết
missing you =
8 tháng 1 2022 lúc 17:48

\(\left\{{}\begin{matrix}x>y\\xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y>0\\xy=1\end{matrix}\right.\)

\(P=\dfrac{x^2+y^2}{x-y}=\dfrac{\left(x-y\right)^2+2xy}{x-y}=x-y+\dfrac{2xy}{x-y}=x-y+\dfrac{2}{x-y}\ge2\sqrt{\left(x-y\right)\left(\dfrac{2}{x-y}\right)}=2\sqrt{2}\Rightarrow MinP=2\sqrt{2}\)

♥ Aoko ♥
Xem chi tiết
Tống nữ Khánh Ly
Xem chi tiết
_Halcyon_:/°ಠಿ
31 tháng 5 2021 lúc 17:10

Áp dụng bđt : \(\dfrac{1}{a}\)\(\dfrac{1}{b}\) ≥ \(\dfrac{4}{a+b}\)(dấu "=" xảy ra ⇔ a=b)

⇒ P= \(\dfrac{1}{x+1}\)\(\dfrac{1}{y+2}\) ≥ \(\dfrac{4}{x+1+y+2}\) = \(\dfrac{4}{3+3}\) = \(\dfrac{2}{3}\)

Vậy Pmin=\(\dfrac{3}{2}\) ; dấu '=" xảy ra ⇔ \(\left\{{}\begin{matrix}x+1=y+2\\x+y=3\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

 

 

Trần Minh Hoàng
31 tháng 5 2021 lúc 17:14

Bạn cần nêu rõ ra gt đầu là \(0\le x< 1\) và \(2\leq y<3\) hay là \(0\le x< 1,2=\dfrac{6}{5}\le y< 3\)

Bình Trần
31 tháng 5 2021 lúc 17:15

undefined

Thảo Vi
Xem chi tiết
Nguyen Thi Mai
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 10 2021 lúc 10:38

a. Đề bài em ghi sai thì phải

Vì:

\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)

Nguyễn Việt Lâm
25 tháng 10 2021 lúc 10:43

b.

Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)

Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R

Hàm bậc 3 nên có tối đa 3 nghiệm

\(f\left(-2\right)=-8+4a-2b+c>0\)

\(f\left(2\right)=8+4a+2b+c< 0\)

\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)

\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)

\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)

Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn  có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)

\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb

vi lê
Xem chi tiết
trương khoa
29 tháng 4 2021 lúc 14:41

x và y là 2 nghiệm của pt:\(t^2-10t+9=0\)

ta có:a+b+c=1-10+9=0

⇒Pt có 2 nghiệm phân biệt

t1=1     : t2=\(\dfrac{9}{1}\)=9

Vậy (1;9) hoặc (9;1) thì thỏa  \(\left\{{}\begin{matrix}x+y=10\\xy=9\end{matrix}\right.\)

Lê Song Phương
Xem chi tiết
đặng văn nghĩa
10 tháng 10 2023 lúc 14:36

vãi

Nguyễn Trọng Hoàng Phúc
12 tháng 10 2023 lúc 19:57

Mày gửi cái gì vậy

Bùi Đức Huy
17 tháng 10 2023 lúc 18:27

A  Đu