Xét tam giác ABC thoả mãn:
\(\dfrac{1+cosB}{sinB}=\dfrac{2a+c}{\sqrt{4a^2-c^2}}\)
cho tam giác ABC thoả mãn
a, \(\dfrac{1+cosB}{1-cosB}\)= \(\dfrac{2a+c}{2a-c}\) CM: tam giác cân
b, tanB.tanC = \(\dfrac{tanA}{sinB.sinC}\) CM: tam giác vuông
c, \(\left\{{}\begin{matrix}\dfrac{1+cosC}{sinC}=\dfrac{2a+b}{\sqrt{4a^2-b^2}}\\a^2\left(b+c-a\right)=b^3+c^3-a^3\end{matrix}\right.\) CM: tam giác đều
\(\Delta ABC:\)
\(\dfrac{1+cosB}{sinB}=\dfrac{2a+c}{\sqrt{4a^2-c^2}}\)
\(Cm:a=b\)
cho tam giác ABC có BC=a, AB=c, AC=b. Tam giác ABC có đặc điểm gì nếu
\(\frac{1+CosB}{sinB}=\frac{2a+c}{\sqrt{4a^2-c^2}}\)
\(\frac{1+cosB}{\sqrt{1-cos^2B}}=\frac{2a+c}{\sqrt{4a^2-c}}\Leftrightarrow\sqrt{\frac{1+cosB}{1-cosB}}=\frac{2a+c}{\sqrt{4a^2-c^2}}\)
\(\Leftrightarrow\frac{1+cosB}{1-cosB}=\frac{4a^2+4ac+c^2}{4a^2-c^2}\)
\(\Leftrightarrow4a^2-c^2+\left(4a^2-c^2\right)cosB=4a^2+4ac+c^2-\left(4a^2+4ac+c^2\right)cosB\)
\(\Leftrightarrow\left(4a^2+2ac\right)cosB=c^2+2ac\)
\(\Leftrightarrow cosB=\frac{c^2+2ac}{4a^2+2ac}=\frac{c\left(c+2a\right)}{2a\left(c+2a\right)}=\frac{c}{2a}\)
\(\Leftrightarrow\frac{a^2+c^2-b^2}{2ac}=\frac{c}{2a}\Leftrightarrow a^2+c^2-b^2=c^2\)
\(\Leftrightarrow a=b\Rightarrow\) tam giác cân tại C
Cho tam giác ABC thỏa mãn hệ thức b + c = 2a. Trong các mệnh đề sau, mệnh đề nào đúng?
A. CosB + Cos C = 2 Cos A B. Sin B + Sin C = 2 Sin A
C. Sin B + Sin C = \(\dfrac{1}{2}SinA\) D. Sin B + Sin C = 2 Sin A
Theo đl sin có:
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\Rightarrow b=a\dfrac{sinB}{sinA};c=\dfrac{sinC}{sinA}.a\)
Mà `b+c=2a`
\(\Rightarrow a\dfrac{sinB}{sinA}+a\dfrac{sinC}{sinA}=2a\\ \Rightarrow\dfrac{sinB}{sinA}+\dfrac{sinC}{sinA}=2\\ \Leftrightarrow sinB+sinC=2sinA\)
Chọn B
Cho A, B, C là 3 góc trong tam giác. Chứng minh rằng:
1, sin A + sin B - sin C = 4sin\(\dfrac{A}{2}\) sin \(\dfrac{B}{2}\)sin \(\dfrac{C}{2}\)
2, \(\dfrac{sinA+sinB-sinC}{cosA+cosB-cosC+1}=tan\dfrac{A}{2}tan\dfrac{B}{2}tan\dfrac{C}{2}\) (ΔABC nhọn)
3, \(\dfrac{cosA+cosB+cosC+3}{sinA+sinB+sinC}=tan\dfrac{A}{2}+tan\dfrac{B}{2}+tan\dfrac{C}{2}\)
GIÚP MÌNH VỚI!!!
1.
\(sinA+sinB-sinC=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-sin\left(A+B\right)\)
\(=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-2sin\dfrac{A+B}{2}.cos\dfrac{A+B}{2}\)
\(=2sin\dfrac{A+B}{2}.\left(cos\dfrac{A-B}{2}-cos\dfrac{A+B}{2}\right)\)
\(=2sin\dfrac{A+B}{2}.2sin\dfrac{A}{2}.sin\dfrac{B}{2}\)
\(=4sin\dfrac{A}{2}.sin\dfrac{B}{2}.cos\dfrac{C}{2}\)
Sao t lại đc như này v, ai check hộ phát
cho tam giác abc có 3 góc nhọn. Vẽ đường cáo AD, BE, CF cắt nhau tại H. Chứng minh:
a) \(0< cos^2A+cos^2B+cos^2C< 1\)
b)\(2< sin^2A+sin^2B+sin^2C< 3\)
c)sinA + sinB + sinC < 2( cosA + cosB + cosC)
d)sinB . cosC + sinC . cosB = sinA
e)tanA + tanB + tanC = tanA . tanB . tanC
chứng minh tam giác ABC cân khi và chỉ khi\(\dfrac{\sin A+sinB}{cosA+cosB}=\dfrac{1}{2}\left(tanA+tanB\right)\)
mình làm cách này là cách khj nào mà ko cách nào khác ms làm vậy thôi, áp dụng định lí sin và cosin trong tam giác
Cho tam giác ABC, chứng minh rằng:
a) \(Sin\dfrac{A}{2}+Sin\dfrac{B}{2}+Sin\dfrac{C}{2}\le\dfrac{3}{2}\)
b) \(SinA+SinB+SinC\le\dfrac{3\sqrt{3}}{2}\)
Ta có: A = \(sin\dfrac{A}{2}+sin\dfrac{B}{2}+sin\dfrac{C}{2}=cos\dfrac{B+C}{2}+2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}\)
\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}-cos^2\dfrac{B+C}{4}+sin^2\dfrac{B+C}{4}=0\)\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}+2sin^2\dfrac{B+C}{4}-1=0\)
Δ' = \(cos^2\dfrac{B-C}{4}-2\left(A-1\right)\ge0\)
\(\Rightarrow A-1\le\dfrac{1}{2}\Leftrightarrow A\le\dfrac{3}{2}\)
Nhận dạng tam giác ABC biết
\(\dfrac{1+\cos B}{\sin B}=\dfrac{2a+c}{\sqrt{4a^2-c^2}}\)
Lời giải:
\(\frac{1+\cos B}{\sin B}=\frac{2a+c}{\sqrt{(2a-c)(2a+c)}}\)
\(\Rightarrow \frac{(1+\cos B)^2}{\sin ^2B}=\frac{2a+c}{2a-c}\) (bình phương 2 vế)
\(\Leftrightarrow \frac{1+\cos ^2B+2\cos B}{\sin ^2B}=\frac{2a-c+2c}{2a-c}\)
\(\Leftrightarrow \frac{\sin ^2B+2\cos ^2B+2\cos B}{\sin ^2B}=1+\frac{2c}{2a-c}\)
\(\Leftrightarrow \frac{\cos ^2B+\cos B}{\sin ^2B}=\frac{c}{2a-c}\)
\(\Rightarrow (2a-c)(\cos ^2B+\cos B)=c\sin ^2B\)
\(\Leftrightarrow 2a\cos ^2B+(2a-c)\cos B=c\sin ^2B+c\cos ^2B=c(\sin ^2B+\cos ^2B)=c\)
\(\Leftrightarrow 2a(\cos ^2B+\cos B)=c(\cos B+1)\)
\(\Leftrightarrow (\cos B+1)(2a\cos B-c)=0\)
Với mọi \(\widehat{B}< 180^0\Rightarrow \cos B+1\neq 0\). Suy ra \(2a\cos B-c=0\Rightarrow \cos B=\frac{c}{2a}\)
Kẻ đường cao $CH$ xuống $AB$
\(\cos B=\frac{BH}{BC}=\frac{BH}{a}=\frac{c}{2a}\)
\(\Rightarrow BH=\frac{c}{2}\) hay $H$ là trung điểm của $AB$. Vậy $CH$ đồng thời là đường cao và đường trung tuyến, suy ra tam giác $ABC$ cân tại $C$