Cho x,y \(\ge\)1. C/m biểu thức sau
\(x\sqrt{y-1}+y\sqrt{x-1}\le xy\)
Tìm GTNN của các biểu thức sau:
1) Cho x,y >0
Tìm Min P= \(\frac{x+y}{\sqrt{xy}}+\frac{\sqrt{xy}}{x+y}\)
2) Cho x, y, z >0 và x+y+z ≤ \(\frac{3}{4}\)
Tìm Min P= \(\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)\)+ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
3) Cho a,b >0 và a+b≥3
Tìm Min P=\(a+b+\frac{1}{2a}+\frac{2}{b}\)
3, \(P=a+b+\frac{1}{2a}+\frac{2}{b}\)
=\(\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\)
AD bđt cosi vs hai số dương có:
\(\frac{1}{2a}+\frac{a}{2}\ge2\sqrt{\frac{1}{2a}.\frac{a}{2}}=2\sqrt{\frac{1}{4}}=1\)
\(\frac{b}{2}+\frac{2}{b}\ge2\sqrt{\frac{b}{2}.\frac{2}{b}}=2\)
Có \(\frac{a+b}{2}\ge\frac{3}{2}\) (vì a+b \(\ge3\))
=> \(P=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\ge1+2+\frac{3}{2}\)
<=> P \(\ge4.5\)
Dấu "=" xảy ra <=>\(\left\{{}\begin{matrix}\frac{1}{2a}=\frac{a}{2}\\\frac{b}{2}=\frac{2}{b}\\a+b=3\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a^2=1\\b^2=4\\a+b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=1\\b=2\\a+b=3\end{matrix}\right.\)
=> a=2,b=3
Vậy minP=4.5 <=>a=1,b=2
Chứng minh bất đẳng thức: \(x\sqrt{y-1}+y\sqrt{x-1}\le xy\) với x,y \(\ge\) 1
b1 sử dụng HDT hoặc co-si
a)cho x\(\ge\)0,y\(\ge\)1,z\(\ge\)2cmr \(x\sqrt{y-1}+y\sqrt{x-1}\le xy\)
b)cho \(x\ge0,y\ge1,z\ge2cmr\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{1}{2}\left(x+y+z\right)\)
c)cho a,b,c\(\ge0\)cmr \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)
Áp dụng cô si
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\\\frac{1}{c}+\frac{1}{b}\ge2\sqrt{\frac{1}{cb}}\\\frac{1}{a}+\frac{1}{c}\ge2\sqrt{\frac{1}{ac}}\end{cases}}\)\(\Rightarrow\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}\)
\("="\Leftrightarrow a=b=c=0\)
\(\hept{\begin{cases}\sqrt{x}\le\frac{x+1}{2}\\\sqrt{y-1}\le\frac{y-1+1}{2}\\\sqrt{z-2}\le\frac{z-2+1}{2}\end{cases}}\)\(\Rightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+1+y-1+1+z-2+1}{2}\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+y+z}{2}\)
\("="\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
Sửa ĐK của c) : a, b, c > 0
Áp dụng bất đẳng thức Cauchy ta có :
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}=\frac{2}{\sqrt{ab}}\)
\(\frac{1}{b}+\frac{1}{c}\ge2\sqrt{\frac{1}{bc}}=\frac{2}{\sqrt{bc}}\)
\(\frac{1}{c}+\frac{1}{a}\ge2\sqrt{\frac{1}{ca}}=\frac{2}{\sqrt{ca}}\)
Cộng các vế tương ứng
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ab}}+\frac{2}{\sqrt{bc}}+\frac{2}{\sqrt{ca}}\)
=> \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)
=> đpcm
Đẳng thức xảy ra khi a = b = c
c) Cách khác: Áp dụng bổ đề: \(x^2+y^2+z^2\ge xy+yz+zx\forall x,y,z>0\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\left(\frac{1}{\sqrt{a}}\right)^2+\left(\frac{1}{\sqrt{b}}\right)^2+\left(\frac{1}{\sqrt{c}}\right)^2\ge\frac{1}{\sqrt{a}}.\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}.\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}.\frac{1}{\sqrt{a}}\)
\(=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)
Dấu "=" xảy ra khi \(a=b=c>0\)
Cho x ≥ 1; y ≥ 2; z ≥ 3 và \(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
Chứng minh M ≤ \(\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\)
\(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
\(=\dfrac{yz\sqrt{x-1}}{xyz}+\dfrac{xz\sqrt{y-2}}{xyz}+\dfrac{xy\sqrt{z-3}}{xyz}\)
\(=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\)\(\Rightarrow\dfrac{\sqrt{x-1}}{x}\le\dfrac{x}{2}\cdot\dfrac{1}{x}=\dfrac{1}{2}\)
\(\sqrt{y-2}=\dfrac{\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{y}{2\sqrt{2}}\)\(\Rightarrow\dfrac{\sqrt{y-2}}{y}\le\dfrac{y}{2\sqrt{2}}\cdot\dfrac{1}{y}=\dfrac{1}{2\sqrt{2}}\)
\(\sqrt{z-3}=\dfrac{\sqrt{3\left(z-3\right)}}{\sqrt{3}}\le\dfrac{z}{2\sqrt{3}}\)\(\Rightarrow\dfrac{\sqrt{z-3}}{z}\le\dfrac{z}{2\sqrt{3}}\cdot\dfrac{1}{z}=\dfrac{1}{2\sqrt{3}}\)
Cộng theo vế 3 BĐT trên ta có:
\(M\le\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\) (ĐPCM)
Cm các đẳng thức sau:
a, \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)với x,y,z \(\ge0\)
b, \(\sqrt{x+3}+\sqrt{5-x}\le4\)
c, Cho x,y,z >0 thỏa mãn x+y+z=1. CMR: \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\)
c) theo bunhia ta có:
\(VT^2\le3\left(x+y+y+z+z+x\right)=6\)
\(\Rightarrow VT\le\sqrt{6}\)
Cho biểu thức M = \(\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}-\sqrt{y}}-x\)
a) Tìm x,y để biểu thức M có nghĩa
b) Tìm tất cả giá trị x,y để M = -1
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\y>0\\x\ne y\end{matrix}\right.\)
\(M=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}}.\left(\sqrt{x}-\sqrt{y}\right)-x\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)-x\)
\(=x-y-x=-y\)
\(M=-1\Rightarrow-y=-1\Rightarrow y=1\)
1. Cho các số thực dương x,y thỏa mãn x + xy + y = 8. Tính GTNN của biểu thức \(A=x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)
2. Cho a,b,c > 1. Tính GTNN của biểu thức \(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
3. Cho 2 số \(x,y\ne0\) thỏa mãn đẳng thức sau: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\). Tính GTLN của biểu thức \(C=\frac{1}{xy}\)
4. Cho các số thực dương a,b,c thỏa mãn abc = 1. Cmr: \(D=\frac{a^4}{b^2\left(c+2\right)}+\frac{b^4}{c^2\left(a+2\right)}+\frac{c^4}{a^2\left(b+2\right)}\ge1\)
5. Cho a,b,c là các số dương không lớn hơn 1. Cmr: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
6. Cho 2 số thực x,y thỏa mãn điều kiện \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\). Cmr: \(\frac{9+3\sqrt{21}}{2}\le x+y\le9+3\sqrt{15}\).
7. Cho x,y,z là các số thực dương thỏa mãn x + y + z = 1. Cmr: \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\).
8. Cho x,y,z là các số thực dương thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015.\) Tìm GTNN của biểu thức: \(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\).
9. Cho các số thực dương x,y thỏa mãn \(\left(x+y-1\right)^2=xy\). Tìm GTNN của biểu thức: \(M=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\).
10. Tìm m để phương trình \(mx^2-\left(5m-2\right)x+6m-5=0\) có 2 nghiệm nghịch đảo nhau.
11. Cho 2 số thực dương x,y thỏa mãn \(x^2+y\ge1\). Tìm GTNN của biểu thức: \(N=y^2+\left(x^2+2\right)^2\).
12. Cho 9 số thực \(a_1,a_2,...,a_9\) không nhỏ hơn -1 và \(a_1^3+a_2^3+...+a_9^3=0\). Tính GTLN của biểu thức \(Q=a_1+a_2+...+a_9\).
13. cho a,b,c > 0 và a + b + c = 1. Cmr: \(\sqrt{2015a+1}+\sqrt{2015b+1}+\sqrt{2015c+1}< 78\)
Mn làm giúp mk với. Mk đang cần gấp
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
Bài 3:
Áp dụng BĐT AM-GM cho các số dương ta có:
\(4=2x^2+\frac{1}{x^2}+\frac{y^2}{4}=x^2+x^2+\frac{1}{x^2}+\frac{y^2}{4}\geq 4\sqrt[4]{\frac{x^2y^2}{4}}\)
\(\Rightarrow 4\geq x^2y^2\Rightarrow 2\geq xy\geq -2\)
Ta thấy khi $xy$ càng tiến về $0$ và dương thì $C=\frac{1}{xy}$ càng lớn. Do đó $C=\frac{1}{xy}$ không có GTLN.
1)Tính giá trị của biểu thức A=\(\frac{xy-\sqrt{\left(x^2-1\right)}\cdot\sqrt{y^2-1}}{xy+\sqrt{x^2-1}\cdot\sqrt{y^2-1}}\)với x=\(\frac{1}{2}\left(a+\frac{1}{a}\right)\)và y=\(\frac{1}{2}\left(b+\frac{1}{b}\right)\)với a\(\ge\)1 ,
b\(\ge\)1
2)Cho ba số a,b,c thỏa mãn \(0\le a,b,c\le2\)và a+b+c=3. Chứng minh \(\sqrt{ab}+\sqrt{bc}\sqrt{ca}\ge\sqrt{2}\)
giúp mình với . Cảm ơn
Cho biểu thức P=(\(\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\)+\(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}\)):(\(\dfrac{x+y+2xy}{1-xy}\)+1)
a) Rút gọn P
b) Tính giá trị của P tại x=\(\dfrac{2}{2+\sqrt{3}}\)
c) Chứng minh: P≤1
\(P=\left(\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}+\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}\right):\left(\dfrac{x+y+2xy}{1-xy}+1\right)\)
Điều kiện : \(xy\ge0\) hoặc \(xy\le0\) ; \(xy\ne1\); \(x\ge0\);\(y\ge0\)
\(P=\left(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{\left(1+\sqrt{xy}\right)\left(1-\sqrt{xy}\right)}\right):\left(\dfrac{x+2xy+y+1-xy}{1-xy}\right)\)
\(P=\left(\dfrac{\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}}{1-xy}\right):\left(\dfrac{x+xy+y+1}{1-xy}\right)\)
\(P=\left(\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\right):\left(\dfrac{x\left(1+y\right)+\left(y+1\right)}{1-xy}\right)\)
\(P=\left(\dfrac{2\sqrt{x}\left(1+y\right)}{1-xy}\right):\left(\dfrac{\left(1+y\right)\left(x+1\right)}{1-xy}\right)\)
\(P=\dfrac{2\sqrt{x}\left(1+y\right)}{1-xy}.\dfrac{1-xy}{\left(1+y\right)\left(x+1\right)}\)
\(P=\dfrac{2\sqrt{x}}{x+1}\)
b) ta có :\(x=\dfrac{2}{2+\sqrt{3}}=\dfrac{2\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\dfrac{4-2\sqrt{3}}{4-3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
thay \(x=\left(\sqrt{3}-1\right)^2\) vào biểu thức P
ta được : \(P=\dfrac{2\sqrt{\left(\sqrt{3}-1\right)^2}}{\left(\sqrt{3}-1\right)^2+1}\)
\(P=\dfrac{2\left|\sqrt{3}-1\right|}{4-2\sqrt{3}+1}=\dfrac{2\sqrt{3}-2}{5-2\sqrt{3}}\)
\(P=\dfrac{\left(2\sqrt{3}-2\right)\left(5+2\sqrt{3}\right)}{\left(5-2\sqrt{3}\right)\left(5+2\sqrt{3}\right)}=\dfrac{10\sqrt{3}+12-10-4\sqrt{3}}{25-12}\)
\(P=\dfrac{6\sqrt{3}+2}{13}\)
c) để P\(\le\)1 thì \(\dfrac{2\sqrt{x}}{x+1}\le1\)
\(\Leftrightarrow\dfrac{2\sqrt{x}}{x+1}-1\le0\)
\(\Leftrightarrow\dfrac{2\sqrt{x}-x-1}{x+1}\le0\)
\(\Leftrightarrow\dfrac{-\left(x-2\sqrt{x}+1\right)}{x+1}\le0\)
\(\Leftrightarrow\dfrac{-\left(x-1\right)^2}{x+1}\le0\)
Vì \(-\left(x-1\right)^2\le0\) nên x + 1 \(\ge\) 0
\(\Leftrightarrow\) x \(\ge\) -1
đúng thì cho xin 1 like nha