Những câu hỏi liên quan
Lê Huy Hoàng
Xem chi tiết
☆Châuuu~~~(๑╹ω╹๑ )☆
19 tháng 2 2022 lúc 11:32

Áp dụng BĐT

\(\dfrac{9}{x+y+z}\le\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\\ \Rightarrow\dfrac{9abc}{a+3a+2c}\\ =\dfrac{9}{\left(a+c\right)\left(b+c\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{4}{2}\) 

Tương tự với 2 BĐT còn lại rồi cộng vế theo vế

=> 9 vế trái

 \(\le\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\\ +\dfrac{ca}{b+c}+\dfrac{ca}{a+b}+\dfrac{a+b+c}{2}\\ =\dfrac{3\left(a+b+c\right)}{2}\\ \Rightarrow......._{\left(đpcm\right)}\)

Bình luận (0)
Trần Tuấn Hoàng
Xem chi tiết
hoàng minh chính
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2022 lúc 14:08

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(P=\sqrt{\dfrac{yz}{x^2+1}}+\sqrt{\dfrac{zx}{y^2+1}}+\sqrt{\dfrac{xy}{z^2+1}}\)

\(P=\sqrt{\dfrac{yz}{x^2+xy+yz+zx}}+\sqrt{\dfrac{zx}{y^2+xy+yz+zx}}+\sqrt{\dfrac{xy}{z^2+xy+yz+zx}}\)

\(P=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\dfrac{zx}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\)

\(P\le\dfrac{1}{2}\left(\dfrac{y}{x+y}+\dfrac{z}{x+z}\right)+\dfrac{1}{2}\left(\dfrac{z}{y+z}+\dfrac{x}{x+y}\right)+\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)=\dfrac{3}{2}\)

\(P_{max}=\dfrac{3}{2}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\) hay \(a=b=c=\sqrt{3}\)

Bình luận (0)
vn jat
Xem chi tiết
Akai Haruma
7 tháng 3 2021 lúc 0:32

Đề sai. Bạn thử với $a=b=c=0,1$ sẽ thấy. 

Bình luận (0)
loancute
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2021 lúc 21:15

\(VT=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (1)
Nguyễn Trọng Chiến
6 tháng 3 2021 lúc 21:22

Ta chứng minh bđt phụ \(x^2+y^2+z^2\ge xy+yz+zx\forall x,y,z>0\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\left(1\right)\)

Áp dụng bđt Cô-si vào các số a,b,c dương :

\(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^3}{b}\cdot ab}=2\sqrt{a^4}=2a^2\)

Chứng minh tương tự ta được:

\(\dfrac{b^3}{c}+bc\ge2b^2;\dfrac{c^3}{a}+ca\ge2c^2\)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2a^2+2b^2+2c^2\ge2ab+2bc+2ca\) (do áp dụng (1)) \(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)

Dấu = xảy ra \(\Leftrightarrow a=b=c\)

Bình luận (0)
Quách Phú Đạt
Xem chi tiết
Kuro Kazuya
7 tháng 5 2017 lúc 4:02

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\dfrac{a^2}{2}+\dfrac{b^2}{c}+\dfrac{c^2}{c}\ge\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ca}{2}\)

\(\Leftrightarrow a^2-\dfrac{a^2}{2}+b^2-\dfrac{b^2}{2}+c^2-\dfrac{c^2}{2}\ge\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ca}{2}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{a^2+b^2+c^2+ab+bc+ca}{2}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{2\left(a^2+b^2+c^2+ab+bc+ca\right)}{4}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{4}\) (1)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

Tương tự ta có \(\left\{{}\begin{matrix}\left(b+c\right)^2\ge4bc\\\left(c+a\right)^2\ge4ca\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2c+\left(a+b\right)^2\ge4abc+\left(a+b\right)^2\\\left(b+c\right)^2a+\left(b+c\right)^2\ge4abc+\left(b+c\right)^2\\\left(c+a\right)^2b+\left(c+a\right)^2\ge4abc+\left(c+a\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^2\left(c+1\right)\ge4abc+\left(a+b\right)^2\\\left(b+c\right)^2\left(a+1\right)\ge4abc+\left(b+c\right)^2\\\left(c+a\right)^2\left(b+1\right)\ge4abc+\left(c+a\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}\le\dfrac{8}{4abc+\left(a+b\right)^2}\\\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}\le\dfrac{8}{4abc+\left(b+c\right)^2}\\\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}\le\dfrac{8}{4abc+\left(c+a\right)^2}\end{matrix}\right.\) (2)

Từ (1) và (2)

\(\Rightarrow VT\ge\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a^2\right)}{4}\) (3)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{\left(a+b\right)^2}{4}\ge2\sqrt{\dfrac{2}{c+1}}=\dfrac{4}{\sqrt{2\left(c+1\right)}}\)

Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{\left(b+c\right)^2}{4}\ge\dfrac{4}{\sqrt{2\left(a+1\right)}}\\\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(c+a\right)^2}{4}\ge\dfrac{4}{\sqrt{2\left(b+1\right)}}\end{matrix}\right.\)

\(\Rightarrow\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a^2\right)}{4}\ge\dfrac{4}{\sqrt{2\left(c+1\right)}}+\dfrac{4}{\sqrt{2\left(a+1\right)}}+\dfrac{4}{\sqrt{2\left(b+1\right)}}\)(4)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\sqrt{2\left(c+1\right)}\le\dfrac{c+3}{2}\)

\(\Rightarrow\dfrac{4}{\sqrt{2\left(c+1\right)}}\ge\dfrac{8}{c+3}\)

Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{4}{\sqrt{2\left(a+1\right)}}\ge\dfrac{8}{a+3}\\\dfrac{4}{\sqrt{2\left(b+1\right)}}\ge\dfrac{8}{b+3}\end{matrix}\right.\)

\(\Rightarrow\dfrac{4}{\sqrt{2\left(c+1\right)}}+\dfrac{4}{\sqrt{2\left(a+1\right)}}+\dfrac{4}{\sqrt{2\left(b+1\right)}}\ge\dfrac{8}{a+3}+\dfrac{8}{b+3}+\dfrac{8}{c+3}\) (5)

Từ điều (3) , (4) , (5)

\(\Rightarrow\dfrac{8}{\left(a+b\right)^2+4abc}+\dfrac{8}{\left(b+c\right)^2+4abc}+\dfrac{8}{\left(c+a\right)^2+4abc}+a^2+b^2+c^2\ge\dfrac{8}{a+3}+\dfrac{8}{b+3}+\dfrac{8}{c+3}\) ( đpcm )

Bình luận (0)
Đinh Kiều Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 3 2023 lúc 23:49

Đặt \(\dfrac{ab+ac}{4}=\dfrac{bc+ab}{6}=\dfrac{ca+cb}{8}=k\)

=>ab+ac=4k; bc+ab=6k; ac+bc=8k

=>ac-bc=-2k; ac+bc=8k; ab+ac=4k

=>ac=3k; bc=5k; ab=k

=>c/b=3; c/a=5

=>c=3b=5a

=>a/3=b/5=c/15

Bình luận (0)
Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 8 2021 lúc 21:50

Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\ge\sqrt[]{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

Do đó:

\(VT\le\dfrac{2a^3}{2\sqrt{a^6bc}}+\dfrac{2b^3}{2\sqrt{b^6ac}}+\dfrac{2c^3}{2\sqrt{c^3ab}}=\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{abc}}=\dfrac{\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}{abc}\)

\(\le\dfrac{a^2+b^2+c^2}{abc}=\dfrac{a}{bc}+\dfrac{b}{ca}+\dfrac{c}{ab}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
Lưu Phương Thảo
Xem chi tiết
Linh_Windy
5 tháng 10 2017 lúc 18:46

Chị cx học Tê Tiêu ạ,A mấy ạ

Bình luận (1)