Cho a,b,c>0. CMR
\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)
1)cho a,b,c >0. \(cmr:\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ca}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
2) cho a,b,c>0 và a+b+c=1. \(cmr:\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\)
3) cho a,b,c>0. \(cme:\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)
4) cho a,b,c>0 .\(cmr:\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)
5)cho a,b,c>0. cmr: \(\dfrac{1}{a\left(a+b\right)}+\dfrac{1}{b\left(b+c\right)}+\dfrac{1}{c\left(c+a\right)}\ge\dfrac{27}{2\left(a+b+c\right)^2}\)
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Bài 2:
Thay $1=a+b+c$ và áp dụng BĐT AM-GM ta có:
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{(a+1)(b+1)(c+1)}{abc}\)
\(=\frac{(a+a+b+c)(b+a+b+c)(c+a+b+c)}{abc}\)
\(\geq \frac{4\sqrt[4]{a.a.b.c}.4\sqrt[4]{b.a.b.c}.4\sqrt[4]{c.a.b.c}}{abc}=\frac{64abc}{abc}=64\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Cho a,b,c>0. CMR
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{c+a}\ge\dfrac{a+b+c}{2}\)
Áp dụng bđt Cô-si:
\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge2\sqrt{\dfrac{a^2}{b+c}\cdot\dfrac{\left(b+c\right)}{4}}=2\sqrt{\dfrac{a^2}{4}}=a\)
Chứng minh tương tự :
\(\dfrac{b^2}{c+a}+\dfrac{c+a}{4}\ge b;\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\)
\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{1}{4}\left(2a+2b+2c\right)\ge a+b+c\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge a+b+c-\dfrac{1}{2}\left(a+b+c\right)=\dfrac{a+b+c}{2}\) Dấu= xảy ra \(\Leftrightarrow a=b=c\)
Cho a,b,c > 0. CMR: \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\).
Ta có: \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Cho a,b,c > 0 và \(a^2+b^2+c^2+abc\ge4\)
CMR: \(\dfrac{2a}{b+c}+\dfrac{2b}{c+a}+\dfrac{2c}{a+b}\ge\dfrac{a}{\sqrt{2-a}}+\dfrac{b}{\sqrt{2-b}}+\dfrac{c}{\sqrt{2-c}}\)
Cho a, b, c > 0 và a+b+c=3 . CMR :
\(\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge\dfrac{3}{2}\)
Cho a,b,c >0. CMR: \(\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{c^2+a^2}+\dfrac{c^2}{a^2+b^2}\ge\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
cho \(a,b,c>0\).CMR
\(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\ge\dfrac{a+b+c}{3}\)
Áp dụng BĐT AG-GM:
\(\dfrac{a^3}{a^2+ab+b^2}\ge\dfrac{a^3}{a^2+\dfrac{a^2+b^2}{2}+b^2}=\dfrac{a^3}{\dfrac{3}{2}\left(a^2+b^2\right)}\)
Cmtt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^3}{b^2+bc+c^2}\ge\dfrac{b^3}{\dfrac{3}{2}\left(b^2+c^2\right)}\\\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{c^3}{\dfrac{3}{2}\left(c^2+a^2\right)}\end{matrix}\right.\)
Cộng vế theo vế của bất đẳng thức:
\(\Leftrightarrow VT\ge\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\)
Tiếp tục áp dụng BĐT AG-GM:
\(\dfrac{a^3}{a^2+b^2}=\dfrac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}\)
Cmtt\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^3}{b^2+c^2}\ge b-\dfrac{c}{2}\\\dfrac{c^3}{c^2+a^2}\ge c-\dfrac{a}{2}\end{matrix}\right.\)
Cộng vế theo vế
\(\Leftrightarrow VT\ge\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\\ \ge\dfrac{2}{3}\left(a-\dfrac{b}{2}+b-\dfrac{c}{2}+c-\dfrac{a}{2}\right)=\dfrac{2}{3}\left(a+b+c-\dfrac{a+b+c}{2}\right)=\dfrac{a+b+c}{3}\)
\(\dfrac{a^3}{a^2+ab+b^2}=a-\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự và cộng lại ta sẽ có đpcm
1. Cho a,b,c t/m: \(\left\{{}\begin{matrix}a\ge\dfrac{4}{3}\\b\ge\dfrac{4}{3}\\c\ge\dfrac{4}{3}\end{matrix}\right.\) và \(a+b+c=6\)
\(CMR:\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\ge\dfrac{6}{5}\)
2. Cho x,y >0 t/m: \(2x+3y-13\ge0\)
Tìm min \(P=x^2+3x+\dfrac{4}{x}+y^2+\dfrac{9}{y}\)
Xét \(\dfrac{a}{a^2+1}+\dfrac{3\left(a-2\right)}{25}-\dfrac{2}{5}=\dfrac{a}{a^2+1}+\dfrac{3a-16}{25}=\dfrac{\left(3a-4\right)\left(a-2\right)^2}{25\left(a^2+1\right)}\ge0\)
\(\Rightarrow\dfrac{a}{a^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(a-2\right)}{25}\)
CMTT \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{b^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(b-2\right)}{25}\\\dfrac{c}{c^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(c-2\right)}{25}\end{matrix}\right.\)
Cộng vế theo vế:
\(\Rightarrow VT\ge\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3\left(a-2\right)+3\left(b-2\right)+3\left(c-2\right)}{25}\ge\dfrac{6}{5}-\dfrac{3\left(a+b+c-6\right)}{25}=\dfrac{6}{5}\)
Dấu \("="\Leftrightarrow a=b=c=2\)
Cho a , b , c > 0 . CMR : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
Ta có BĐT : \(\dfrac{1}{a}+\dfrac{1}{b}\) ≥ \(\dfrac{4}{a+b}\) ( \(a,b>0\) )
\(\dfrac{1}{b}+\dfrac{1}{c}\text{≥}\dfrac{4}{b+c}\left(b;c>0\right)\)
\(\dfrac{1}{a}+\dfrac{1}{c}\text{≥}\dfrac{4}{a+c}\left(a;c>0\right)\)
Cộng từng vế của các BĐT trên , ta có :
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{≥}\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{a+c}\)
⇔ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\text{≥}\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{a+c}\)
Áp dụng bất đẳng thức \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)
Cộng vế theo vế ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)
\(\Leftrightarrow2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\right)\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
\(\Rightarrowđpcm\)