cho 3 đơn thức \(-\frac{1}{3}x^4y^3;-\frac{3}{5}x^3y^4;\frac{1}{2}xy^3\) chứng minh rẳng chúng không thể cùng nhận giá trị âm với các giá trị x;y nào đó
1. Tìm số tự nhiên n biết \(15x^4y^n.\left(-2x^5y^9\right)=30x^9y^{17}\)
2.
a) Cho 3 đơn thức \(\frac{1}{5}x^6y^4;\frac{5}{7}x^2y^5;\frac{7}{13}x^{10}y^{11}\). Chứng minh rằng khi x, y lấy những giá trị khác 0 thì trong 3 đơn thức có ít nhất một đơn thức có giá trị dương.
b) Cho 3 đơn thức \(\frac{-2}{7}x^5y^3;\frac{-1}{2}x^4y;\frac{-7}{15}x^{13}y^6\). Chứng minh rằng khi x, y lấy những giá trị khác 0 thì trong 3 đơn thức có ít nhất một đơn thức có giá trị âm.
Bài 1 :
Ta có : \(15x^4y^n.\left(-2x^5y^9\right)=30x^9y^{17}\)
=> \(15x^4.\left(-y\right)^n.\left(-2\right).\left(-x\right)^5.\left(-y\right)^9=30\left(-x\right)^9.\left(-y\right)^{17}\)
=> \(30\left(-x\right)^9.\left(-y\right)^{n+9}=30.\left(-x\right)^9\left(-y\right)^{17}\)
=> \(\left(x\right)^9.\left(-y\right)^{n+9}=\left(-x\right)^9\left(-y\right)^{17}\)
=> \(x^9y^{n+9}=x^9y^{17}\)
- TH1 : \(x,y=0\)
=> \(0^{n+9}=0^{17}\) ( Luôn đúng \(\forall n\) )
=> \(n\in R\)
- TH2 : \(x,y\ne0\)
=> \(y^{n+9}=y^{17}\)
=> \(n+9=17\)
=> \(n=8\)
\(2a,\) Ta xét tích ba đơn thức sau:
\(\left(\frac{1}{5}x^6y^4\right)\left(\frac{5}{7}x^2y^5\right)\left(\frac{7}{13}x^{10}y^{11}\right)=\frac{1}{13}x^{18}y^{20}>0\forall x,y\ne0\)
\(\RightarrowĐpcm\)
\(b,\) Ta có: \(\left(-\frac{2}{7}x^5y^3\right)\left(\frac{-1}{2}x^4y\right)\left(\frac{-7}{15}x^{13}y^6\right)=-\frac{1}{15}x^{12}y^{20}< 0\forall x,y\ne0\)
\(\RightarrowĐpcm\)
chứng minh 3 đơn thức sau luôn dương:
\(\frac{-1}{4}x^3y^4;-\frac{4}{5}x^4y^3;\frac{1}{2}xy\)
ta có \(\frac{-1}{4}x^3y^4.\frac{-4}{5}x^4y^3.\frac{1}{2}xy=\frac{1}{10}x^8y^8\)
vì x8y8> hoặc = 0
=>1/10x^8y^8> hoặc =0
vây 3 đơn thức này luôn luôn có giá trị dương
h cua 3 so > 0 thi ba so đó đều > 0 ak ??????? (VD: ba so: -1; -2; 3 ma h 3 so nay van > 0 do thoi)
1.cho đa thức A=-4x\(^5y^3+x^4y^2-3x^2y^3z^2+4x^5y^3-x^4y^3+x^2y^3z^2-2y^4\)
a.thu gọn rồi tìm bậc đa thức A
b.tìm đa thức B biết rằng B-2x\(^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)
2.thu gọn các đơn thức sau rồi chỉ rõ hệ số phần biến và tìm bậc
a.A=x\(^3.\left(\frac{-5}{4}x^2y\right).\left(\frac{2}{5}x^3y^4\right)\)
b.B=\(\left(\frac{-3}{4}x^5y^4\right).\left(xy^2\right).\left(\frac{-8}{9}x^2y^5\right)\)
thu gọn các đơn thức và chỉ ra phần hệ số , phần biến của các đơn thức thu gọn lại
\(a\left(\frac{3}{5}x^2y^2\right)\left(\frac{5}{7}x^4y^5\right)\\b\left(-20x^4y^2\right)\left(\frac{1}{5}xy\right) \)
Câu a và b mình ko viết đề nhé bạn!
a)=\(\left(\frac{3}{5}.\frac{5}{7}\right).\left(x^2.x^4\right).\left(y^2.y^5\right)\)
=\(\frac{3}{7}x^6y^7\)
Hệ số:\(\frac{3}{7}\)
Phần biến:\(x^6y^7\)
b)=\(\left(-20\right).\frac{1}{5}.\left(x^4.x\right).\left(y^2.y\right)\)
=\(-4x^5y^3\)
Hệ số:\(-4\)
Phần biến:\(x^5y^3\)
Nhớ tick cho mình nha!
\(a)\left(\frac{3}{5}x^2y^2\right)\left(\frac{5}{7}x^4y^5\right)=\left(\frac{3}{5}.\frac{5}{7}\right)\left(x^2x^4\right)\left(y^2y^5\right)=\frac{3}{7}x^6y^7\)
\(\Rightarrow\)Bậc của đơn thức khi thu gọn là 13
\(b)\left(-20x^4y^2\right)\left(\frac{1}{5}xy\right)=\left(-20.\frac{1}{5}\right)\left(x^4x\right)\left(y^2y\right)=-4x^5y^3\)
\(\Rightarrow\)Bậc của đơn thức khi thu gọn là 8
a)
= \(\frac{3}{7}x^6y^7\)
Hệ số: \(\frac{3}{7}\)
Phần biến: xy
Bậc: 13
b)
= -4x5y3
Hệ số: -4
Phần biến: xy
Bậc: 8
Cho đa thức A = \(\frac{7}{2}x^4y^3-5x^2y^5-6y+8x^2y^5-\frac{1}{3}x^4y^3-\frac{1}{2}y\)
Tính giá trị đa thức A tại x= -2 và y= \(\frac{3}{4}\)
Rút gọn A trước khi tính :
\(A=\left(\frac{7}{2}x^4y^3-\frac{1}{3}x^4y^3\right)+\left(8x^2y^5-5x^2y^5\right)-\left(6y+\frac{1}{2}y\right)\)
\(=\frac{19}{6}x^4y^3+3x^2y^5-\frac{13}{2}y\)
Thay \(x=-2,y=\frac{3}{4}\) vào A có :
\(A=\frac{19}{6}\cdot\left(-2\right)^4\cdot\left(\frac{3}{4}\right)^3+3\cdot\left(-2\right)^2\cdot\left(\frac{3}{4}\right)^5-\frac{13}{2}\cdot\frac{3}{4}\)
\(=\frac{171}{8}+\frac{729}{8192}-\frac{39}{8}\approx16,6\)
:)) Số xấu ....
Xét biểu thức A, ta suy ra:
\(A=\frac{19}{6}x^4y^3+3x^2y^5-\frac{-13}{2}y\)
Tại x=-2 và y=3/4 thì:
\(A=\frac{19}{6}\cdot\left(-2\right)^4\cdot\left(\frac{3}{4}\right)^3+3\cdot\left(-2\right)^2\cdot\left(\frac{3}{4}\right)^5-\frac{-13}{2}\cdot\frac{3}{4}\)
(phần này bạn tự tính)
\(\)
chứng minh 3 đơn thức\(\frac{-1}{4}x^3y^4\),\(\frac{-4}{5}x^4y^3\)và \(\frac{1}{2}xy\)không thể cùng âm
xét tích :
\(\left(\frac{-1}{4}x^3y^4\right).\left(\frac{-4}{5}x^4y^3\right).\left(\frac{1}{2}xy\right)\)
\(=\frac{1}{10}x^8y^8\)
vì x8 \(\ge\)0 ; y8 \(\ge\)0 nên \(\frac{1}{10}x^8y^8\)\(\ge\)0 nên ....
Bài 2 : Cho đơn thức A = \((-\dfrac{1}{5}x^3y^2)(-2x^4y)\)
a, Thu gọn đơn thức A
b, Hãy chỉ ra phần hệ số, phần biến và bậc của đơn thức thu gọn
c, Tính tổng của đơn thức A với các đơn thức \(x^7y^3\)\(;\)\(-3x^7y^3\)
\(A=\dfrac{2}{5}x^7y^3\)
Hệ số: \(\dfrac{2}{5}\)
Bậc: 10
Thu gọn các đơn thức và chỉ ra phần hệ số, phần biến của các đơn thức thu gọn đó:
a/ \(\left(\frac{3}{5}x^2-y^2\right).\left(\frac{5}{7}x^4y^5\right)\)
b/ \(\left(-20x^4y^2\right).\left(\frac{1}{5}xy\right)\)
Thu gọn rồi tìm bậc và hệ số của đơn thức \(M=\left(-3x^4y^2\right)^3\left(\frac{1}{3}x^2y^3\right)^2\)