Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2020 lúc 13:08

Xét khai triển:

\(\left(1+x\right)^n=C_n^0+C_n^1x+C_n^2x^2+C_n^3x^3+...+C_n^nx^n\)

Đạo hàm 2 vế:

\(n\left(1+x\right)^{n-1}=C_n^1+2C_n^2x+3C_n^3x^2+...+nC_n^nx^{n-1}\)

Thay \(x=1\)\(n=2017\) vào ta được:

\(2017.2^{2016}=C_{2017^1}+2C_{2017}^2+3C_{2017}^3+...+2017.C_{2017}^{2017}\)

Hoa Minh Ngọc
Xem chi tiết
oki pạn
4 tháng 2 2022 lúc 10:33

b. delta = \(\left(2n-1\right)^2-4.1.n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)

pt luôn có 2 nghiệm phân biệt

c.\(\left\{{}\begin{matrix}x_1=\dfrac{2n-1-1}{2}=n-1\\x_2=\dfrac{2n-1+1}{2}=n\end{matrix}\right.\)

\(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3=n^2-4n+4=\left(n-2\right)^2\)

(số bình phương luôn lớn hơn bằng 0) với mọi n

Nguyễn Huy Tú
4 tháng 2 2022 lúc 10:37

2, Ta có : \(\Delta=\left(2n-1\right)^2-4n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)

Vậy pt luôn có 2 nghiệm pb 

3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2n-1\\x_1x_2=n\left(n-1\right)\end{matrix}\right.\)

Vì x1 là nghiệm của pt trên nên ta được 

\(x_1^2=\left(2n-1\right)x_1-n\left(n-1\right)\)

Thay vào ta được 

\(2nx_1-x_1-n^2+n-2x_2+3\)

bạn kiểm tra lại đề nhé 

Alice dono
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 5 2020 lúc 16:13

Bài 1:

Ta có: m>n

\(\Leftrightarrow8m>8n\)

\(\Leftrightarrow8m-2>8n-2\)

Bài 3:

a) Ta có: 2-5x<3(2-x)

\(\Leftrightarrow2-5x< 6-3x\)

\(\Leftrightarrow2-5x-6+3x< 0\)

\(\Leftrightarrow-4-2x< 0\)

\(\Leftrightarrow2x< -4\)

hay x<-2

b) Ta có: \(\frac{5x-2}{3}\ge x+1\)

\(\Leftrightarrow\frac{5x-2}{3}-x-1\ge0\)

\(\Leftrightarrow\frac{5x-2}{3}-\frac{3x}{3}-\frac{3}{3}\ge0\)

\(\Leftrightarrow5x-2-3x-3\ge0\)

\(\Leftrightarrow2x-5\ge0\)

\(\Leftrightarrow2x\ge5\)

hay \(x\ge\frac{5}{2}\)

Bài 4:

Ta có: |x+5|=3x-2

\(\Leftrightarrow\left[{}\begin{matrix}x+5=3x-2\\x+5=2-3x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5-3x+2=0\\x+5-2+3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-2x+7=0\\4x+3=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}-2x=-7\\4x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=\frac{-3}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{7}{2};\frac{-3}{4}\right\}\)

Le Tran Bach Kha
24 tháng 5 2020 lúc 16:08

1. Cho m > n, hãy so sánh 8m - 2 với 8n - 2

Ta có : \(m>n\)

\(\Rightarrow8m>8n\)

\(\Rightarrow8m-2>8n-2\)

Hoàng Thị Thanh Huyền
Xem chi tiết
Akai Haruma
24 tháng 11 2017 lúc 1:28

Lời giải:

a) \(m=2\) thì (1) trở thành:

\(3x^2+4x-4=0\)

\(\Leftrightarrow (3x-2)(x+2)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

b) Ta có:

\(x^2-2x+1=0\Leftrightarrow (x-1)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Do đó để (1) và \(x^2-2x+1=0\) thì (1) phải có nghiệm \(x=1\)

Suy ra \(3.1^2+4(m-1).1-m^2=0\)

\(\Leftrightarrow -m^2+4m-1=0\)

\(\Leftrightarrow m=2\pm \sqrt{3}\)

c)

Xét \(\Delta'=[2(m-1)]^2+3m^2=7m^2-8m+4\)

\(=7(m-\frac{4}{7})^2+\frac{12}{7}\)

Thấy rằng \((m-\frac{4}{7})^2\geq 0\forall m\in\mathbb{R}\Rightarrow \Delta'\geq \frac{12}{7}>0\) với mọi số thực m

\(\Rightarrow (1)\) luôn có hai nghiệm phân biệt (đpcm)

Huy Dz
Xem chi tiết

Lớp 5 đã học giải pt rồi á em?

Nguyễn Văn Trí
Xem chi tiết
Phương Phan
Xem chi tiết
Kiêm Hùng
15 tháng 4 2020 lúc 22:13

\(pt:2x^2-2\left(m-1\right)x+3m-8=0\)

\(a.\)Thay \(m=3:pt\Leftrightarrow2x^2-4x+1=0\)

\(\Delta=\left(-4\right)^2-4.2.1=8>0\Rightarrow\left\{{}\begin{matrix}x_1=\frac{4+\sqrt{8}}{2.2}=\frac{2+\sqrt{2}}{2}\\x_2=\frac{4-\sqrt{8}}{2.2}=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\)

\(b.\Delta=\left(-2m+2\right)^2-4.2.\left(3m-8\right)=4-8m+4m^2-24m+64=4m^2-32m+68=\left(2m-8\right)^2+4>0\forall m\)

\(\Rightarrow pt\) luôn có 2 nghiệm phân biệt với mọi m

\(c.\) Theo hệ thức Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=\frac{3m-8}{2}\end{matrix}\right.\)

\(\left(3x_1-1\right)\left(3x_2-1\right)=23\Leftrightarrow9x_1x_2-3\left(x_1+x_2\right)+1=23\Leftrightarrow9.\frac{3m-8}{2}-3\left(m-1\right)=22\Rightarrow m=\frac{110}{21}\)

( Số nó xấu hay mình làm sai :<<)

Thanh Liêm
Xem chi tiết
Hải Anh
9 tháng 4 2019 lúc 20:56

a) Bạn tự thay tính nhé

b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)

\(\Leftrightarrow m^2+2m+1-m^2+1>0\)

\(\Leftrightarrow2m+2>0\Leftrightarrow m>-1\)

Theo HT Vi et ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2-1\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=x_1x_2+8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2-8=0\)

\(\Leftrightarrow\left(2m+2\right)^2-3\left(m^2-1\right)-8=0\)

\(\Leftrightarrow4m^2+8m+4-3m^2+3-8=0\)

\(\Leftrightarrow m^2+8m-1=0\)

Giải \(\Delta'\Rightarrow m=\pm\sqrt{17}-4\) . Lấy \(m=\sqrt{17}-4\)

Vậy m = \(\sqrt{17}-4\) là giá trị cần tìm.

Kim Oanh
Xem chi tiết
Nguyễn Ngọc Huyền Anh
6 tháng 4 2017 lúc 19:27

a, Thay m = 2 vào pt ta được :

x2 - (2.2 + 1)x + 22 + 1 = 0

<=> x2 - 5x + 5 = 0

Ta có \(\Delta=b^2-4ac\)

= 25 - 20 = 5

=> \(\sqrt{\Delta}\) = \(\sqrt{5}\)

=> Pt có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x_1=\dfrac{5+\sqrt{5}}{2}\\x_2=\dfrac{5-\sqrt{5}}{2}\end{matrix}\right.\)

b, Để pt (*) có hai nghiệm phân biệt

<=> \(\Delta\) \(\ge\) 0

<=> (2m - 1)2 - 4(m2 + 1) \(\ge\) 0

<=> 4m2 - 4m + 1 - 4m2 - 4 \(\ge\) 0

<=> -4m - 3 \(\ge\) 0

<=> m \(\ge\dfrac{-3}{4}\)