U1.U3 = 5
U4 - U2 =4
Tìm U1, d, S11.
Ai gioi toan CASIO ko ak? Giup mik vs
3.2.Cho dãy số u1;u2;u3;...;un;Biết u1= 25 ; u2=u1+121;u3=u1+u2+441;u4=u1+u2+u3+1225;
u5= u1+u2+u3+u4+2809;...
a)Viết quy trình bấm phím liên tục tính un
b)Tính U25;u50
\(u_1+u_4=u_2+u_3\) , mà \(u_1+u_2+u_3+u_4=20\)
\(\Rightarrow u_1+u_4=u_2+u_3=10\)
\(\Rightarrow2u_1+3d=10\)
\(\dfrac{u_1+u_4}{u_1u_4}+\dfrac{u_2+u_3}{u_2u_3}=\dfrac{25}{24}\Leftrightarrow10\left(\dfrac{1}{u_1u_4}+\dfrac{1}{u_2u_3}\right)=\dfrac{25}{24}\)
\(\Leftrightarrow\dfrac{1}{u_1\left(u_1+3d\right)}+\dfrac{1}{\left(u_1+d\right)\left(u_1+2d\right)}=\dfrac{5}{48}\)
\(\Leftrightarrow\dfrac{1}{u_1\left(10-u_1\right)}+\dfrac{9}{\left(10+u_1\right)\left(20-u_1\right)}=\dfrac{5}{48}\)
\(\Leftrightarrow\dfrac{5\left(u_1-8\right)\left(u_1-2\right)\left(u_1^2-10u_1-120\right)}{48u_1\left(u_1-20\right)\left(u_1^2-10\right)}=0\)
Nhiều nghiệm quá
Xác định u1, d của CSC biết: 2u1 + u2 + u3 = -1 và u1.u4=1
=>2u1+u1+q+u1+2q=-1 và u1*(u1+3q)=1
=>4u1+3q=-1 và u1(u1+3q)=1
=>3q=-1-4u1 và u1(u1-1-4u1)=1
=>-3u1^2-u1-1=0 và 3q=1-4u1
=>ko có u1,q của cấp số cộng này
cho cấp số nhân thỏa u1+u2+u3 = 24 và u1^2+u2^2+u3^2=364, tìm công bội và số hạng đầu
Lời giải:
Gọi $q$ là công bội thì $u_2=u_1q; u_3=u_1q^2$.
Theo bài ra ta có:
$24=u_1+u_2+u_3=u_1+u_1q+u_1q^2=u_1(1+q+q^2)(1)$
$364=u_1^2+u_2^2+u_3^2=u_1^2+(u_1q)^2+(u_1q^2)^2$
$=u_1^2(1+q^2+q^4)(2)$
Từ $(1); (2)\Rightarrow \frac{u_1^2(1+q+q^2)^2}{u_1^2(1+q^2+q^4)}=\frac{24^2}{364}$
$\Leftrightarrow \frac{(1+q+q^2)^2}{1+q^2+q^4}=\frac{144}{91}(*)$
Đặt $q=a; q^2+1=b$ thì:
$(*)\Leftrightarrow \frac{(a+b)^2}{b^2-a^2}=\frac{144}{91}$
$\Rightarrow 91(a+b)^2=144(b^2-a^2)$
$\Leftrightarrow (a+b)(235a-53b)=0$
$\Rightarrow a+b=0$ hoặc $235a-53b=0$
Hiển nhiên $a+b=q^2+q+1>0$ nên $235a-53b=0$
$\Leftrightarrow 53(q^2+1)-235q=0$
Đến đây thì ơơn giản rồi.
Cho cấp số nhân u 1 , u 2 , u 3 , .. u n với công bội q q ≠ 0 , q ≠ 1 . Đặt S n = u 1 + u 2 + u 3 + .. + u n . Khi đó ta có:
A. S n = u 1 q n − 1 q − 1
B. S n = u 1 q n − 1 − 1 q − 1
C. S n = u 1 q n + 1 q + 1
D. S n = u 1 q n − 1 − 1 q + 1
Chọn A.
Phương pháp:
Sử dụng công thức tính tổng của n số hạng đầu của cấp số nhân có số hạng đầu tiên là
Cho cấp số nhân u 1 , u 2 , u 3 , . . u n với công bội q ( q ≠ 0 , q ≠ 1 ) . Đặt S n = u 1 + u 2 + u 3 + . . . + u n . Khi đó ta có:
A. S n = u 1 ( q n - 1 ) q - 1
B. S n = u 1 ( q n - 1 - 1 ) q - 1
C. S n = u 1 ( q n + 1 ) q + 1
D. S n = u 1 ( q n - 1 - 1 ) q + 1
Chọn A
Phương pháp:
Sử dụng công thức tính tổng của n số hạng đầu của cấp số nhân có số hạng đầu tiên
là u 1 và công bội q là S n = u 1 ( 1 - q n ) 1 - q
Cách giải:
S n = u 1 ( 1 - q n ) 1 - q ⇔ S n = u 1 ( q n - 1 ) q - 1
Ai đó làm ơn giúp mình với ạ, mình cảm ơn rất nhiều 1.Cho cấp số nhân(Un). Tìm U1 và q. Biết rằng a. U1 + u6= 165; u3 + u4=60 2. Tìm số hạng đầu và công bội của cấp số nhân, biết a. U4- u2= 72; U5- u3=144 b. u1- u3+u5=65;u1+u7=325 c. u3+u5=90; u2-u6=240 d. u1+u2+u3=14; u1.u2.u3=64
Để tìm U1 và q, ta sử dụng hệ phương trình sau:
U1 + U6 = 165U3 + U4 = 60Đầu tiên, ta sử dụng phương trình thứ hai để tìm U3: U3 = 60 - U4
Sau đó, thay giá trị của U3 vào phương trình thứ nhất: U1 + U6 = 165 U1 + (U3 + 3q) = 165 U1 + (60 - U4 + 3q) = 165 U1 - U4 + 3q = 105 (1)
Tiếp theo, ta sử dụng phương trình thứ nhất để tìm U6: U6 = 165 - U1
Thay giá trị của U6 vào phương trình thứ hai: U3 + U4 = 60 (60 - U4) + U4 = 60 60 = 60 (2)
Từ phương trình (2), ta thấy rằng phương trình không chứa U4, do đó không thể giải ra giá trị của U4. Vì vậy, không thể tìm được giá trị cụ thể của U1 và q chỉ từ hai phương trình đã cho.
Để tìm số hạng đầu và công bội của cấp số nhân, ta sử dụng các phương trình đã cho:
a. U4 - U2 = 72 U5 - U3 = 144
Đầu tiên, ta sử dụng phương trình thứ nhất để tìm U4: U4 = U2 + 72
Sau đó, thay giá trị của U4 vào phương trình thứ hai: U5 - U3 = 144 (U2 + 2q) - U3 = 144 U2 - U3 + 2q = 144 (3)
Từ phương trình (3), ta thấy rằng phương trình không chứa U2, do đó không thể giải ra giá trị của U2 và q chỉ từ hai phương trình đã cho.
b. U1 - U3 + U5 = 65 U1 + U7 = 325
Đầu tiên, ta sử dụng phương trình thứ hai để tìm U7: U7 = 325 - U1
Sau đó, thay giá trị của U7 vào phương trình thứ nhất: U1 - U3 + U5 = 65 U1 - U3 + (U1 + 6q) = 65 2U1 - U3 + 6q = 65 (4)
Từ phương trình (4), ta thấy rằng phương trình không chứa U3, do đó không thể giải ra giá trị của U1 và q chỉ từ hai phương trình đã cho.
c. U3 + U5 = 90 U2 - U6 = 240
Đầu tiên, ta sử dụng phương trình thứ hai để tìm U6: U6 = U2 - 240
Sau đó, thay giá trị của U6 vào phương trình thứ nhất: U3 + U5 = 90 U3 + (U2 - 240 + 4q) = 90 U3 + U2 - 240 + 4q = 90 U3 + U2 + 4q = 330 (5)
Từ phương trình (5), ta thấy rằng phương trình không chứa U2, do đó không thể giải ra giá trị của U2 và q chỉ từ hai phương trình đã cho.
d. U1 + U2 + U3 = 14 U1 * U2 * U3 = 64
Đầu tiên, ta sử dụng phương trình thứ nhất để tìm U3: U3 = 14 - U1 - U2
Sau đó, thay giá trị của U3 vào phương trình thứ hai: U1 * U2 * (14 - U1 - U2) = 64
Phương trình này có dạng bậc ba và không thể giải ra giá trị cụ thể của U1 và U2 chỉ từ hai phương trình đã cho.
Tóm lại, không thể tìm được giá trị cụ thể của số hạng đầu và công bội của cấp số nhân chỉ từ các phương trình đã cho.
Cho cấp số cộng có u 2 + u 3 = 20 ; u 5 + u 7 = - 29 . Tìm u 1 , d ?
A. u 1 = 20 , d = - 3
B. u 1 = 20 , d = - 7
C. u 1 = 20 . 5 , d = - 7
D. u 1 = - 20 . 5 , d = - 3
Cho mạch điện AB có hiệu điện thế không đổi gồm có biến trở R, cuộn dây thuần cảm L và tụ điện C mắc nối tiếp. Gọi U1, U2, U3 lần lượt là hiệu điện thế hiệu dụng trên R, L và C. Biết khi U1=100V, U2=200V, U3=100V. Điều chỉnh R để U1=80V, lúc ấy U2 có giá trị:
A. 233,2 V
B. 100 2 V
C. 50 2 V
D. 50 V
Chọn A
U= U 1 2 + ( U 2 - U 3 ) 2 = U ' 1 2 + ( U ' 2 - U ' 3 ) 2 = 100 2 V
Suy ra: U ' 2 - U ' 3 2 = U 2 - U ' 1 2 = 13600
U 2 - U 3 = I Z L - Z C = 100(V) (*)
U ' 2 - U ' 3 = I Z L - Z C = 13600 (V) (**) (R thay đổi không ảnh hưởng đến ZL và ZC)
Từ (*) và (**) suy ra :
I ' I = 13600 100 ⇒ U ' 2 U 2 = I ' Z L I Z L = 13600 100
=> U’2 = 13600 100 U2 = 233,2 V