Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
28 tháng 6 2017 lúc 15:36

Quy đồng mẫu thức nhiều phân thức

Quy đồng mẫu thức nhiều phân thức

Zata
Xem chi tiết
Akai Haruma
27 tháng 9 2023 lúc 20:06

Lời giải:

Từ $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$

$\Rightarrow xy+yz+xz=0$

Khi đó:

$x^2+2yz=x^2+yz-xz-xy=(x^2-xy)-(xz-yz)=x(x-y)-z(x-y)=(x-z)(x-y)$

Tương tự với $y^2+2zx, z^2+2xy$ thì:

$P=\frac{yz}{(x-z)(x-y)}+\frac{xz}{(y-z)(y-x)}+\frac{xy}{(z-x)(z-y)}$

$=\frac{-yz(y-z)-xz(z-x)-xy(x-y)}{(x-y)(y-z)(z-x)}=\frac{-[yz(y-z)+xz(z-x)+xy(x-y)]}{-[xy(x-y)+yz(y-z)+xz(z-x)]}=1$

Khánh Huyền Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2023 lúc 23:38

a: \(A=31x^2y^3-2xy^3+\dfrac{1}{4}x^2y^2+2\)

\(B=2xy^3+\dfrac{3}{4}x^2y^2-31x^2y^3-x^2-5\)

P=\(A+B=x^2y^2-x^2-3\)

\(A-B=62x^2y^3-4xy^3-\dfrac{1}{2}x^2y^2+x^2+7\)

b: Khi x=6 và y=-1/3 thì \(P=\left(6\cdot\dfrac{-1}{3}\right)^2-6^2-3=4-36-3=1-36=-35\)

camcon
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 12 2021 lúc 23:09

\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)

\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Dấu \("="\Leftrightarrow x=y=z=1\)

Nguyễn Việt Lâm
30 tháng 12 2021 lúc 23:10

\(\sqrt{5x^2+2xy+2y^2}=\sqrt{4x^2+2xy+y^2+x^2+y^2}\ge\sqrt{4x^2+2xy+y^2+2xy}=2x+y\)

\(\Rightarrow\dfrac{1}{\sqrt{5x^2+2xy+2y^2}}\le\dfrac{1}{2x+y}=\dfrac{1}{x+x+y}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{1}{9}\left(\dfrac{2}{x}+\dfrac{1}{y}\right)\)

Tương tự:

\(\dfrac{1}{\sqrt{5y^2+2yz+2z^2}}\le\dfrac{1}{9}\left(\dfrac{2}{y}+\dfrac{1}{z}\right)\) ; \(\dfrac{1}{\sqrt{5z^2+2zx+2x^2}}\le\dfrac{1}{9}\left(\dfrac{2}{z}+\dfrac{1}{x}\right)\)

Cộng vế:

\(P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=1\)

\(P_{max}=1\) khi \(x=y=z=1\)

Vinne
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 9 2021 lúc 8:39

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow\dfrac{xy+yz+xz}{xyz}=0\Leftrightarrow xy+yz+xz=0\Leftrightarrow yz=-xy-xz\)

Ta có \(x^2+2yz=x^2+yz-xy-xz=\left(x-y\right)\left(x-z\right)\)

Tương tự \(y^2+2xz=\left(y-x\right)\left(y-z\right);z^2-2xy=\left(z-x\right)\left(z-y\right)\)

\(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(y-z\right)\left(y-x\right)}+\dfrac{xy}{\left(z-x\right)\left(z-y\right)}\\ A=\dfrac{-yz\left(y-z\right)-xz\left(z-x\right)-xy\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ A=\dfrac{-yz\left(y-z\right)+xz\left(y-z\right)+xz\left(x-y\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ A=\dfrac{\left(y-z\right)\left(xz-yz\right)+\left(x-y\right)\left(xz-xy\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\\ A=\dfrac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)

 

Minh Hiếu
9 tháng 9 2021 lúc 8:36

⇒yz=−xy−zx⇒yz/x^2+2yz=yz/x^2+yz−xy−zx

=yz/(x−y)(x−z)

Tương tự: xy/z^2+2xy=xy/(x−z)(y−z)

Lấp La Lấp Lánh
9 tháng 9 2021 lúc 8:36

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xy+yz+xz=0\)

\(\Leftrightarrow yz=-xy-xz\)\(\Leftrightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

Tương tự: \(\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(y-x\right)\left(y-z\right)}\)

                    \(\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)

\(\Rightarrow\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}=\dfrac{-yz\left(y-z\right)-xz\left(z-x\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 3 2021 lúc 7:31

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)

\(\Rightarrow yz=-xy-zx\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-zx}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

Tương tự: \(\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(y-x\right)\left(y-z\right)}\) ; \(\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)

\(\Rightarrow A=\dfrac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)

Phàn Tử Hắc
Xem chi tiết
Trần Quốc Lộc
5 tháng 11 2017 lúc 12:10

\(\text{1) }\dfrac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\\ =\dfrac{\left(x^7+x^6\right)+\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x^6+x^4+x^2+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6+x^4+x^2+1}{x-1}\)

\(\text{3) }\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\\ =\dfrac{\left(x^2-2xy+y^2\right)+\left(2xz-2yz\right)+z^2}{\left(x^2-2xy+y^2\right)-z^2}\\ =\dfrac{\left(x-y\right)^2+2\left(x-y\right)z+z^2}{\left(x-y\right)^2-z^2}\\ =\dfrac{\left(x-y+z\right)^2}{\left(x-y+z\right)\left(x-y-z\right)}\\ =\dfrac{x-y+z}{x-y-z}\)

Kien Nguyen
5 tháng 11 2017 lúc 13:34

Hỏi đáp ToánHỏi đáp ToánHỏi đáp Toán

DƯƠNG PHAN KHÁNH DƯƠNG
5 tháng 11 2017 lúc 18:08

Câu 1 :

Ta có :

\(\dfrac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\)

\(=\dfrac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x^6+x^4+x^2+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x^6+x^4+x^2+1\right)}{\left(x-1\right)}\)

\(=\dfrac{x^4\left(x^2+1\right)+\left(x^2+1\right)}{\left(x-1\right)}\)

\(=\dfrac{\left(x^2+1\right)\left(x^4+1\right)}{x-1}\)

Câu 2 : Ta có VT :

\(\dfrac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)

\(=\dfrac{2x^2+2xy+xy+y^2}{x^2\left(2x+y\right)-y^2\left(2x+y\right)}\)

\(=\dfrac{2x\left(x+y\right)+y\left(x+y\right)}{\left(2x+y\right)\left(x^2-y^2\right)}\)

\(=\dfrac{\left(x+y\right)\left(2x+y\right)}{\left(x+y\right)\left(x-y\right)\left(2x+y\right)}\)

\(=\dfrac{1}{x-y}=VP\left(đpcm\right)\)

Câu 3 :

\(\)Ta có :

\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)

\(=\dfrac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}=\dfrac{\left(x-y+z\right)\left(x-y+z\right)}{\left(x-y-z\right)\left(x-y+z\right)}\)

\(=\dfrac{\left(x-y+z\right)}{\left(x-y-z\right)}\)

\(\)