x2 - 2xy + 4x - 8y
16 - 49y2 + y2 + 8y
Giúp em với ạ.
Phân tích đa thức thành nhân tử:
16 - 9y2 + y2 + 8y
Giúp với ạ, em cảm ơn
\(=\left(y+4\right)^2-9x^2=\left(y-3x+4\right)\left(y+3x+4\right)\)
16 - 9y^2 + y^2 + 8y
= ( 4 + y ) - ( 3x )^2
= ( 4 + y + 3x ) ( 4 + y - 3x )
16-9y2+y2+8y
= (16+8y+y2)-9y2
= (42+2.4.y+y2)-9y2
= (4+y)2-(3y)2
= (4+y-3y)(4+y+3y)
= (4-2y)(4+4y)
a) A = x2 - 2x + 1 - y2 + 2x - 1
b) A = x2 - 4x + 4 - y2 - 6y - 9
c) A = 4x2 - 4x + 1 - y2 - 8y - 16
d) A = x2 - 2xy + y2 - z2 + zt - t2
a) A = x2 - 2x + 1 - y2 + 2x - 1
= (x2 - 2x + 1)-( y2-2x+1)
= (x-1)2-(y-1)2
= (x-1-y+1)(x-1+y-1)
b) A = x2 - 4x + 4 - y2 - 6y - 9
= (x2 - 4x + 4)-(y2+6y+9)
= (x-2)2-(y+3)2
= (x-2-y-3)(x-2+y+3)
c) A = 4x2 - 4x + 1 - y2 - 8y - 16
= (4x2 - 4x + 1) - (y2+8y+16)
= (2x-1)2-(y+4)2
= (2x-1-y-4)(2x-1+y+4)
d) A = x2 - 2xy + y2 - z2 + 2zt - t2
=(x2 - 2xy + y2)-(z2- 2zt + t2)
= (x-y)2-(z-t)2
=(x-y-z+t)(z-y+z-t)
câu d mik có sửa lại đề vì mik thấy đề hơi sai
a) A =
= x2 - y2 + 2x - 2x + 1 - 1
= x2 - y2 = (x-y) (x+y)
b) A=
= (x-2)2 - (y+3)2 = (x-y-5) (x+y+1)
c) A=
= (2x-1)2 - (y+4)2
= (2x+y+3) (2x-y-5)
d) đề có thể sai
mk cần gấp mn giúp mk vs ạ
bình phương của 1 tổng , 1 hiệu
A) 49y2 - 42.x.y + 10x2 - 6x+9
B) 64x2 -48x - y2-20y - 91
C) x4+ 2x2 - y2-2y
D) x2 - 6x - y2-10y-16
A) \(...=\left(7y-3\right)^3\)
B) \(...=\left(4y-3\right)^3\)
C) \(...=x^4+2x^2+1-\left(y^2+2y+1\right)\)
\(=\left(x^2+1\right)^2-\left(y+1\right)^2\)
D) \(...=x^2-6x+9-\left(y^2-10y+25\right)\)
\(=\left(x-3\right)^2-\left(y-5\right)^2\)
cậu có thể giải chi tiết giúp tớ dc ko
Áp dụng \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
\(\left(a+b\right)^2=a^2+2ab+b^2;\left(a-b\right)^2=a^2-2ab+b^2\)
1.
a.(-xy)(-2x2y+3xy-7x)
b.(1/6x2y2)(-0,3x2y-0,4xy+1)
c.(x+y)(x2+2xy+y2)
d.(x-y)(x2-2xy+y2)
2.
a.(x-y)(x2+xy+y2)
b.(x+y)(x2-xy+y2)
c.(4x-1)(6y+1)-3x(8y+4/3)
1.
\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)
\(=2x^3y^2-3x^2y^2+7x^2y\)
\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)
\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)
\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3\)
\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3\)
\(=x^3-3x^2y+3xy^2-y^3\)
2.
\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3-y^3\)
\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3+y^3\)
\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)
\(=24xy+4x-6y-1-24xy-4x\)
\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)
\(=-6y-1\)
#Toru
Điền vào chỗ chống để các biểu thức sau trở thành bình phương của một tổng hoặc 1 hiệu
a) x2 +20x+.......
b)16 x2+24xy+.......
c)y2-.......+49
d)......-42xy+49y2
`a)x^2+20x+100=(x+10)^2`
`b)16x^2+24xy+9y^2=(4x+3y)^2`
`c)y^2-14y+49=(y-7)^2`
`d)9x^2-42xy+49y^2=(3x-7y)^2`
a, \(x^2+2x.10+100=\left(x+10\right)^2\)
\(b,16x^2+2.4x.3y+9y^2=\left(4x+3y\right)^2\)
\(c,y^2-14y+49=\left(y-7\right)^2\)
\(d,9x^2-2.3x.7x+49y^2=\left(3x-7y\right)^2\)
Khi phân tích đa thức x2 + 4x – 2xy – 4y + y2 thành nhân tử, bạn Việt làm như sau:
x2 + 4x – 2xy – 4y + y2 = (x2 - 2xy + y2) + (4x – 4y)
= (x - y)2 + 4(x – y)
= (x – y)(x – y + 4).
Em hãy chỉ rõ trong cách làm trên, bạn Việt đã sử dụng những phương pháp nào để phân tích đa thức thành nhân tử.
x2 + 4x – 2xy – 4y + y2 = (x2-2xy+ y2) + (4x – 4y) → bạn Việt dùng phương pháp nhóm hạng tử
= (x - y)2 + 4(x – y) → bạn Việt dùng phương pháp dùng hằng đẳng thức và đặt nhân tử chung
= (x – y)(x – y + 4) → bạn Việt dùng phương pháp đặt nhân tử chung
phân tích các đa thức sau thành nhân tử: a) 4x(2x - 3y) - 8y(3y - 2x) b) 4x2 - 4xy + y2 - 9z2 c) x2y + yz + xy2 + xz d) (1 - x2)x2 - 16x2 - 16
Bạn thử xem lại đề câu d nhé.
a) Ta có: \(4x\left(2x-3y\right)-8y\left(3y-2x\right)\)
\(=4x\left(2x-3y\right)+8y\left(2x-3y\right)\)
\(=4\left(2x-3y\right)\left(x+2y\right)\)
b) Ta có: \(4x^2-4xy+y^2-9z^2\)
\(=\left(2x+y\right)^2-\left(3z\right)^2\)
\(=\left(2x+y+3z\right)\left(2x+y-3z\right)\)
c) Ta có: \(x^2y+yz+xy^2+xz\)
\(=xy\left(x+y\right)+z\left(x+y\right)\)
\(=\left(x+y\right)\left(xy+z\right)\)
Đặt nhân tử :
X2 - 4x - 2xy - 8y =
(x2-4x)+(-2xy-8y)
=x(x-4)+2y(x-4)
=(2y+x)(x-4)
\(x\left(x-4\right)+2y\left(x-4\right)\)
\(\left(x-4\right)\left(x+2y\right)\)
Nên sửa lại đề là:
x^2 - 4x + 2xy - 8y
Hoặc x^2 - 4x - 2xy + 8y
Phân tích các đa thức sau thành nhân tử:
a/ x( 3- x) – x + 3 b/ 3x2 – 5x – 3xy + 5y c/ x2 – xy – 10x + 10y
d/ 2xy+ x2 + y2 - 16 e/ x2 – y2 – 4x – 4y f/ 9 – 4x2 + 4xy – y2
g/ y3 – 2xy2 + x2y h/ x3 – 3x2 – 4x + 12 i/ x( x- y) + x2 – y2
a: \(=\left(3-x\right)\left(x+1\right)\)
b: \(=3x\left(x-y\right)-5\left(x-y\right)\)
=(x-y)(3x-5)
c: \(=x\left(x-y\right)-10\left(x-y\right)\)
\(=\left(x-y\right)\left(x-10\right)\)
a) \(=x\left(3-x\right)+\left(3-x\right)=\left(3-x\right)\left(x+3\right)\)
b) \(=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
c) \(=x\left(x-y\right)-10\left(x-y\right)=\left(x-y\right)\left(x-10\right)\)
d) \(=\left(x+y\right)^2-16=\left(x+y-4\right)\left(x+y+4\right)\)
e) \(=\left(x-y\right)\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(x-y-4\right)\)
f) \(=9-\left(4x^2-4xy+y^2\right)=9-\left(2x-y\right)^2=\left(3-2x+y\right)\left(3+2x-y\right)\)
g) \(=y\left(y^2-2xy+x^2-y\right)\)
h) \(=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
i) \(=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)=\left(x-y\right)\left(2x+y\right)\)