limx→5 khi \(\dfrac{2+\sqrt{x-4}-\sqrt{x+4}}{x-5}\)
tính giới hạn của các hàm số sau:
a, limx→0\(\dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt[3]{1+x}-\sqrt{1-x}}\)
b, limx→0(\(\dfrac{1}{x}-\dfrac{1}{x^2}\))
c, limx→+∞ \(\dfrac{x^4-x^3+11}{2x-7}\)
d, limx→5 ( \(\dfrac{7}{\left(x-1\right)^2}.\dfrac{2x+1}{2x-3}\) )
a. Áp dụng công thức L'Hospital:
\(\lim\limits_{x\to 0}\frac{\sqrt{x+1}-\sqrt{1-x}}{\sqrt[3]{x+1}-\sqrt{1-x}}=\lim\limits_{x\to 0}\frac{\frac{1}{2}(x+1)^{\frac{-1}{2}}+\frac{1}{2}(1-x)^{\frac{-1}{2}}}{\frac{1}{3}(x+1)^{\frac{-2}{3}}+\frac{1}{2}(1-x)^{\frac{-1}{2}}}=\frac{1}{\frac{5}{6}}=\frac{6}{5}\)
b.
\(\lim\limits_{x\to 0}(\frac{1}{x}-\frac{1}{x^2})=\lim\limits_{x\to 0}\frac{x-1}{x^2}=-\infty\)
c. Áp dụng quy tắc L'Hospital:
\(\lim\limits_{x\to +\infty}\frac{x^4-x^3+11}{2x-7}=\lim\limits_{x\to +\infty}\frac{4x^3-3x^2}{2}=+\infty \)
d.
\(\lim\limits_{x\to 5}\frac{7}{(x-1)^2}.\frac{2x+1}{2x-3}=\frac{7}{(5-1)^2}.\frac{2.5+11}{2.5-3}=\frac{11}{16}\)
limx->4 \(\dfrac{\sqrt{x+5}-3}{4-x}\)
\(lim\left(x->4\right)\dfrac{\sqrt{x+5}-3}{x-4}=lim\left(x->4\right)\dfrac{x+5-9}{\left(x-4\right)\left(\sqrt{x+5}+3\right)}=lim\left(x->4\right)\dfrac{x-4}{\left(x-4\right)\left(\sqrt{x+5}+3\right)}=lim\left(x->4\right)\dfrac{1}{\sqrt{x+5}+3}\\ =\dfrac{1}{\sqrt{4+5}+3}=\dfrac{1}{3+3}=\dfrac{1}{6}\)
11. P=\(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{4x}{4-x}\right);\dfrac{x+5\sqrt{x}+6}{x-4}\)
a.rút gọn
b. tính giá trị P khi x=\(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
c. tìm x để P=2
\(a,P=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{4x}{4-x}\right):\dfrac{x+5\sqrt{x}+6}{x-4}\left(dk:x\ge0,x\ne4\right)\)
\(=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{4x}{x-4}\right).\dfrac{x-4}{x+2\sqrt{x}+3\sqrt{x}+6}\)
\(=\dfrac{\left(\sqrt{x}+2\right)^2-\left(\sqrt{x}-2\right)^2+4x}{x-4}.\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+4\sqrt{x}+4-x+4\sqrt{x}-4+4x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{4x+8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{4\sqrt{x}}{\sqrt{x}+3}\)
\(b,x=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{4}}\\ =\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\\ =\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\\ =\sqrt{5}+2-\sqrt{5}+2\\ =4\)
Khi \(x=4\Rightarrow P=\dfrac{4\sqrt{4}}{\sqrt{4}+3}=\dfrac{4.2}{2+3}=\dfrac{8}{5}\)
\(c,P=2\Leftrightarrow\dfrac{4\sqrt{x}}{\sqrt{x}+3}=2\Leftrightarrow\dfrac{4\sqrt{x}-2\left(\sqrt{x}+3\right)}{\sqrt{x}+3}=0\Leftrightarrow2\sqrt{x}-6=0\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)
Câu 1:
a, limx→-∞ \(\dfrac{x+\sqrt{x^2+2}}{\sqrt{8x^2+5x+2}}\)
b, limx→-∞ \(\dfrac{\sqrt{x^2+2x}+3x}{\sqrt{4x^2+1}-x+2}\)
c, limx→-∞ \(\dfrac{x+\sqrt{x^2+x}}{3x-\sqrt{x^2+1}}\)
d, limx→-∞ \(\dfrac{\sqrt{x^2+x+2}+3x}{\sqrt{4x^2+1}-x+1}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+\sqrt{x^2+2}}{\sqrt{8x^2+5x+2}}=\dfrac{1+\sqrt{1+\dfrac{2}{x^2}}}{\sqrt{8+\dfrac{5}{x}+\dfrac{2}{x^2}}}=\dfrac{1+\sqrt{1}}{\sqrt{8}}=\dfrac{\sqrt{2}}{2}\).
Rút gọn biểu thức
P = \(\dfrac{x+\sqrt{x}}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{x-6\sqrt{x}+4}{x-4}\)
và tìm giá trị của P khi x=9 + 4\(\sqrt{5}\)
ĐKXĐ: \(x\ge0;x\ne4\)
\(P=\dfrac{x+\sqrt{x}}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{x-6\sqrt{x}+4}{x-4}\)
\(=\dfrac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+2\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-6\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x\sqrt{x}+2x+x+2\sqrt{x}-\left(2x-4\sqrt{x}-\sqrt{x}+2\right)+x-6\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x\sqrt{x}+2x+x+2\sqrt{x}-2x+4\sqrt{x}+\sqrt{x}-2+x-6\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x\sqrt{x}+2x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}\left(x+1\right)+2\left(x+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\left(x+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x+1}{\sqrt{x}-2}\)
Khi \(x=9+4\sqrt{5}\)
Ta có: \(4+4\sqrt{5}+5=2^2+2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2=\left(2+\sqrt{5}\right)^2\)
\(\Rightarrow\sqrt{x}=2+\sqrt{5}\)
\(\Rightarrow P=\dfrac{\left(2+\sqrt{5}\right)^2+1}{2+\sqrt{5}-2}=\dfrac{9+4\sqrt{5}+1}{\sqrt{5}}=\dfrac{10+4\sqrt{5}}{\sqrt{5}}=4+2\sqrt{5}\)
Vậy \(P=4+2\sqrt{5}\) khi \(x=9+4\sqrt{5}\).
\(D=\dfrac{x\sqrt{x}+2x+x+2\sqrt{x}-2x+4\sqrt{x}+\sqrt{x}-2+x-6\sqrt{x}+4}{x-4}\)
\(=\dfrac{x\sqrt{x}+2x+2}{x-4}\)
Khi x=9+4căn 5 thì \(D=\dfrac{\left(9+4\sqrt{5}\right)\left(\sqrt{5}+2\right)+2\sqrt{5}+4+2}{\sqrt{5}-2}\)
\(=\dfrac{9\sqrt{5}+18+20+8\sqrt{5}+2\sqrt{5}+6}{\sqrt{5}-2}\)
=(44+19căn 5)*(căn 5+2)
=44căn 5+88+95+38căn 5
=82căn 5+183
1.cho biểu thức A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}-\dfrac{1}{\sqrt{x}-2}\)với(x≥0;x≠4)
a)rút gọn A
b)tính A khi x=6+4\(\sqrt{2}\)
2.cho biểu thức P=\(\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}-\dfrac{8x}{x-4}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+3\right)\)với x≥0;x≠1;x≠4
a)rút gọn P
b)tìm x để P=-4
Câu 1:
a, limx→+∞ (\(\sqrt{x+1}-\sqrt{x}\))
b, limx→+∞ (\(\sqrt{x+\sqrt{x}}-\sqrt{x}\))
c, limx→-∞ (\(\sqrt{3x^2+x+1}+x\sqrt{3}\))
d, limx→+∞ (\(\sqrt{x^2+2x+4}-\sqrt{x^2-2x+4}\))
\(\lim\limits_{x\rightarrow\infty}\left(\sqrt{x+1}-\sqrt{x}\right)=\lim\limits_{x\rightarrow\infty}\dfrac{1}{\sqrt{x+1}+\sqrt{x}}=\dfrac{1}{\infty}=0\).
a) \(lim_{x\rightarrow+\infty}\left(\sqrt{x+1}-\sqrt{x}\right)=lim_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{x+1}+\sqrt{x}}\right)=0\)
b) \(lim_{x\rightarrow+\infty}\left(\sqrt{x+\sqrt{x}}-\sqrt{x}\right)=lim_{x\rightarrow+\infty}\left(\dfrac{x+\sqrt{x}-x}{\sqrt{x+\sqrt{x}}+\sqrt{x}}\right)=lim_{x\rightarrow+\infty}\left(\dfrac{\sqrt{x}}{\sqrt{x+\sqrt{x}}+\sqrt{x}}\right)\)
\(=lim_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{\dfrac{x+\sqrt{x}}{x}}+1}\right)=lim_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{1+\dfrac{1}{\sqrt{x}}}+1}\right)=\dfrac{1}{2}\)
c) \(lim_{x\rightarrow-\infty}\left(\sqrt{3x^2+x+1}+x\sqrt{3}\right)=lim_{x\rightarrow-\infty}\left(\dfrac{x+1}{\sqrt{3x^2+x+1}-x\sqrt{3}}\right)\)
\(=lim_{x\rightarrow-\infty}\left(\dfrac{1+\dfrac{1}{x}}{\sqrt{\dfrac{3x^2+x+1}{x^2}}-\dfrac{x\sqrt{3}}{x^2}}\right)\)
\(=lim_{x\rightarrow-\infty}\left(\dfrac{1+\dfrac{1}{x}}{\sqrt{3+\dfrac{1}{x}+\dfrac{1}{x^2}}-\dfrac{\sqrt{3}}{x}}\right)=\dfrac{1}{\sqrt{3}}\)
d) \(lim_{x\rightarrow+\infty}\left(\sqrt{x^2+2x+4}-\sqrt{x^2-2x+4}\right)=lim_{x\rightarrow+\infty}\left(\dfrac{4x}{\sqrt{x^2+2x+4}+\sqrt{x^2-2x+4}}\right)\)
\(=lim_{x\rightarrow+\infty}\left(\dfrac{4}{\sqrt{1+\dfrac{2}{x}+\dfrac{4}{x^2}}+\sqrt{1-\dfrac{2}{x}+\dfrac{4}{x^2}}}\right)=\dfrac{4}{2}=2\)
1. cho biểu thức
P=\(\dfrac{x+\sqrt{x}}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{x-6\sqrt{x}+4}{x-4}\)
a, rút gọn biểu thức
b, tìm giá trị của P khi x=\(9+4\sqrt{5}\)
Cho biểu thức:
P=(\(\dfrac{1}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-4}{2\sqrt{x}-x}\)):(\(\dfrac{2+\sqrt{x}}{\sqrt{x}}\)-\(\dfrac{\sqrt{x}}{\sqrt{x}-2}\))
a)Tìm điều kiện của x để P có nghĩa
b)Rút gọn P
c)Tính giá trị của P khi x=\(\dfrac{3-\sqrt{5}}{2}\)
a: ĐKXĐ: x>0; x<>4
b: \(P=\dfrac{\sqrt{x}+5\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-x}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{6\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-4-x}\)
\(=\dfrac{-6\sqrt{x}+4}{4}\)
c: Khi \(x=\dfrac{3-\sqrt{5}}{2}=\left(\dfrac{\sqrt{5}-1}{2}\right)^2\) thì \(P=\dfrac{-6\cdot\dfrac{\sqrt{5}-1}{2}+4}{4}=\dfrac{-3\left(\sqrt{5}-1\right)+4}{4}\)
\(=\dfrac{-3\sqrt{5}+7}{4}\)