Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Anh Ngọc
Xem chi tiết
Lê Anh Ngọc
Xem chi tiết
Phạm Minh Quang
10 tháng 5 2021 lúc 15:24

Ta có: A = \(sin\dfrac{A}{2}+sin\dfrac{B}{2}+sin\dfrac{C}{2}=cos\dfrac{B+C}{2}+2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}\)

\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}-cos^2\dfrac{B+C}{4}+sin^2\dfrac{B+C}{4}=0\)\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}+2sin^2\dfrac{B+C}{4}-1=0\)

Δ' = \(cos^2\dfrac{B-C}{4}-2\left(A-1\right)\ge0\)

\(\Rightarrow A-1\le\dfrac{1}{2}\Leftrightarrow A\le\dfrac{3}{2}\)

A Lan
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 4 2019 lúc 16:32

\(sinA+sinB-sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}-sinC\)

\(=2cos\frac{C}{2}.cos\frac{A-B}{2}-2sin\frac{C}{2}cos\frac{C}{2}\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)

\(=4cos\frac{C}{2}sin\frac{A}{2}sin\frac{B}{2}\)

Đoàn Minh Huy
Xem chi tiết
Lê Đình Quân
Xem chi tiết
loancute
Xem chi tiết
Trương Huy Hoàng
17 tháng 1 2021 lúc 22:33

Hình tự vẽ nha!

a, Kẻ AN là đường kính của đường tròn (O)

Xét đường tròn (O) có: 

Q là trung điểm của BC (gt)

BC là dây không đi qua tâm

\(\Rightarrow\) OQ \(\perp\) BC (Quan hệ giữa dây và khoảng cách từ tâm đến dây)

Lại có: AD \(\perp\) BC (AD là đường cao theo gt)

\(\Rightarrow\) OQ // AD (Quan hệ từ vuông góc đến //)

Mà H \(\in\) AD (H là trực tâm của tam giác ABC do AD, BE, CF là 3 đường cao)

\(\Rightarrow\) OQ // AH (1)

Xét tam giác ANH có:

OQ // AH (cm trên)

O là trung điểm của AN (O là tâm của đường tròn đường kính AN)

\(\Rightarrow\) OQ là đường trung bình của tam giác ANH (định lý đường trung bình của tam giác)

\(\Rightarrow\) OQ = \(\dfrac{1}{2}\)AH (t/c đường trung bình của tam giác)

hay AH = 2OQ (đpcm)

b, Ta có: sinB = \(\dfrac{AD}{AB}\) ; sinC = \(\dfrac{AD}{AC}\)

\(\Rightarrow\) sinB + sinC = \(\dfrac{AD}{AB}+\dfrac{AD}{AC}\) = \(AD.\left(\dfrac{1}{AB}+\dfrac{1}{AC}\right)\)

\(AD.\left(\dfrac{AB+AC}{AB.AC}\right)\) = \(AD.\left(\dfrac{2BC}{AB.AC}\right)\) = \(\dfrac{2BC.AD.sinA}{AB.AC.sinA}\)

\(\dfrac{4S_{ABC}.sinA}{2S_{ABC}}\) = 2SinA (đpcm)

Phần c đang nghĩ tiếp ;-;

Chúc bn học tốt!

quangduy
Xem chi tiết
Akai Haruma
10 tháng 3 2019 lúc 17:01

Lời giải:

a) Theo định lý sin và áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=\frac{b+c}{\sin B+\sin C}=\frac{2a}{\sin B+\sin C}\)

\(\Rightarrow \frac{1}{\sin A}=\frac{2}{\sin B+\sin C}\)

\(\Rightarrow 2\sin A=\sin B+\sin C\) (đpcm)

b) Theo định lý sin ta có:

\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)

\(\Rightarrow (\frac{a}{\sin A})^2=\frac{b}{\sin B}.\frac{c}{\sin C}=\frac{a^2}{\sin B.\sin C}\)

\(\Rightarrow \sin ^2A=\sin B.\sin C\) (đpcm)

liluli
Xem chi tiết
Hồng Phúc
1 tháng 7 2021 lúc 22:07

1.

\(sinA+sinB-sinC=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-sin\left(A+B\right)\)

\(=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-2sin\dfrac{A+B}{2}.cos\dfrac{A+B}{2}\)

\(=2sin\dfrac{A+B}{2}.\left(cos\dfrac{A-B}{2}-cos\dfrac{A+B}{2}\right)\)

\(=2sin\dfrac{A+B}{2}.2sin\dfrac{A}{2}.sin\dfrac{B}{2}\)

\(=4sin\dfrac{A}{2}.sin\dfrac{B}{2}.cos\dfrac{C}{2}\)

Sao t lại đc như này v, ai check hộ phát

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 9 2019 lúc 17:04

ta có

sinA + sinB – sinC = 4sin (A/2) sin(B/2) cos(C/2) (2)

suy ra điều phải chứng minh.