\(\left(z-\dfrac{2}{15}\right)^3=\dfrac{8}{125}\)
\(\left(x-\dfrac{2}{15}\right)^3=\dfrac{8}{125};\left(\dfrac{4}{5}\right)^{2x+5}=\dfrac{256}{625}\)
\(\left(x-\dfrac{2}{15}\right)^3=\dfrac{8}{125}\)
\(\left(x-\dfrac{2}{15}\right)^3=\left(\dfrac{2}{5}\right)^3\)
\(x-\dfrac{2}{15}=\dfrac{2}{5}\)
\(x=\dfrac{2}{5}+\dfrac{2}{15}\)
\(x=\dfrac{8}{15}\)
\(\left(\dfrac{4}{5}\right)^{2x+5}=\dfrac{256}{625}\)
\(\left(\dfrac{4}{5}\right)^{2x+5}=\left(\dfrac{4}{5}\right)^4\)
\(2x+5=4\)
\(2x=-1\)
\(x=-0,5\)
\(\left(x-\dfrac{2}{15}\right)^3=\dfrac{8}{125}\\ \Rightarrow\left(x-\dfrac{2}{15}\right)^3=\left(\dfrac{2}{5}\right)^3\\ \Rightarrow x-\dfrac{2}{15}=\dfrac{2}{5}\\ \Rightarrow x=\dfrac{2}{5}+\dfrac{2}{15}\\ \Rightarrow x=\dfrac{6}{15}+\dfrac{2}{15}\\ \Rightarrow x=\dfrac{8}{15}\\ \left(\dfrac{4}{5}\right)^{2x+5}=\dfrac{256}{625}\\ \Rightarrow\left(\dfrac{4}{5}\right)^{2x+5}=\left(\dfrac{4}{5}\right)^4\\ \Rightarrow2x+5=4\\ \Rightarrow2x=4-5\\ \Rightarrow2x=-1\\ \Rightarrow x=-\dfrac{1}{2}\)
Đề: Cho \(\left\{{}\begin{matrix}x,y,z>0\\x+y\le z\end{matrix}\right.\) tìm Min của \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\) Làm thế này không biết đúng ko
Ta có :A= \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=3+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{z^2}{x^2}+\dfrac{x^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{y^2}{z^2}\)
=> A \(=3+\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)+\left(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)\)
Áp dụng BĐT Cauchy ta có
\(A\ge3+2+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)=6+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)\)
Do \(x+y\le z\Rightarrow\dfrac{x}{z}+\dfrac{y}{z}\le1\) ; Đặt \(u=\dfrac{x}{z}\); \(v=\dfrac{y}{z}\)
\(\Rightarrow\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}=\dfrac{1}{u^2}+\dfrac{1}{v^2}\ge\dfrac{2}{uv}\ge\dfrac{2}{\dfrac{\left(u+v\right)^2}{4}}\ge\dfrac{2}{\dfrac{1}{4}}=8\)
\(\Rightarrow A\ge6+\dfrac{15}{16}.8=\dfrac{27}{2}\) Vậy minA = \(\dfrac{27}{2}\) khi \(x=y=\dfrac{z}{2}\)
\(BDT\Leftrightarrow\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{z^2}{x^2}+\dfrac{x^2}{z^2}+3\)
Áp dụng BĐT AM-GM:\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\ge2\)
\(\Rightarrow VT\ge\)\(\dfrac{y^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{z^2}{x^2}+\dfrac{x^2}{z^2}+5\)
Lần lượt có các đánh giá: \(\dfrac{y^2}{z^2}+\dfrac{x^2}{z^2}\ge\dfrac{1}{2}\left(\dfrac{x+y}{z}\right)^2\)
Và \(\dfrac{z^2}{y^2}+\dfrac{z^2}{x^2}\ge\dfrac{1}{2}\left(\dfrac{4z}{x+y}\right)^2\)
\(\Rightarrow VT\ge\dfrac{1}{2}\left(\dfrac{4z}{x+y}\right)^2+\dfrac{1}{2}\left(\dfrac{x+y}{z}\right)^2+5\)
Đặt \(t=\dfrac{z}{x+y}\ge1\) thì ta được:
\(\Rightarrow VT\ge8t^2+\dfrac{1}{2t^2}+5\)\(\ge\dfrac{17}{2}+5=\dfrac{27}{2}\)
Thu gọn \(\dfrac{20x^2+120x+180}{\left(3x+5\right)^2-4x^2}+\dfrac{5x^2-125}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(2x+3\right)^2-x^2}{3\left(x^2+8x+15\right)}\)
\(\dfrac{20x^2+120x+180}{\left(3x+5\right)^2-4x^2}+\dfrac{5x^2-25}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(2x+3\right)^2-x^2}{3\left(x^2+8x+15\right)}\)
\(=\dfrac{20\left(x^2+6x+9\right)}{\left(3x+5+2x\right)\left(3x+5-2x\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{\left(3x-2x-5\right)\left(3x+2x+5\right)}-\dfrac{\left(2x+3-x\right)\left(2x+3+x\right)}{3\left(x+3\right)\left(x+5\right)}\)
\(=\dfrac{20\left(x+3\right)^2}{5\left(x+1\right)\cdot\left(x+5\right)}+\dfrac{5\left(x-5\right)\left(x+5\right)}{5\left(x+1\right)\left(x-5\right)}-\dfrac{\left(x+3\right)\cdot3\left(x+1\right)}{3\left(x+3\right)\left(x+5\right)}\)
\(=\dfrac{4\left(x+3\right)^2}{\left(x+1\right)\left(x+5\right)}+\dfrac{x+5}{x+1}-\dfrac{x+1}{x+5}\)
\(=\dfrac{4\left(x+3\right)^2+\left(x+5\right)^2-\left(x+1\right)^2}{\left(x+1\right)\left(x+5\right)}\)
\(=\dfrac{4x^2+24x+36+x^2+10x+25-x^2-2x-1}{\left(x+1\right)\cdot\left(x+5\right)}\)
\(=\dfrac{4x^2+32x+60}{\left(x+1\right)\left(x+5\right)}=\dfrac{4\left(x^2+8x+15\right)}{\left(x+1\right)\left(x+5\right)}\)
\(=\dfrac{4\left(x+3\right)\cdot\left(x+5\right)}{\left(x+1\right)\left(x+5\right)}=\dfrac{4x+12}{x+1}\)
1.Tính :
a) 1253 : 57
b) \(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{4}{49}\right)^5:\left(\dfrac{8}{343}\right)^2\)
c) 3 - \(\left(-\dfrac{7}{9}\right)^0+\left(\dfrac{1}{3}\right)^5.3^5\)
d) \(\dfrac{45^{10}.5^{20}}{75^{15}}\)
a, \(125^3:5^7=\left(5^3\right)^3:5^7=5^9:5^7=5^2\)
b, \(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{4}{49}\right)^5:\left(\dfrac{8}{343}\right)^2\)
= \(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{2^2}{7^2}\right)^5:\left(\dfrac{2^3}{7^3}\right)^2\)
= \(\left(\dfrac{2}{7}\right)^{18}:\left[\left(\dfrac{2}{7}\right)^2\right]^5:\left[\left(\dfrac{2}{7}\right)^3\right]^2\)
=\(\left(\dfrac{2}{7}\right)^{18}:\left(\dfrac{2}{7}\right)^{10}:\left(\dfrac{2}{7}\right)^6\)
= \(\left(\dfrac{2}{7}\right)^{18-10-6}=\left(\dfrac{2}{7}\right)^2\)
c, \(3-\left(\dfrac{-7}{9}\right)^0+\left(\dfrac{1}{3}\right)^5.3^5\)
= 3 - 1 +\(\left[\left(\dfrac{1}{3}\right)^5.3^5\right]\)
= 2 + 1=3
d, \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(9.5\right)^{10}.5^{20}}{\left(25.3\right)^{15}}=\dfrac{\left(3^2\right)^{10}.5^{10}.5^{20}}{\left(5^2\right)^{15}.3^{15}}\)
= \(\dfrac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5\)
Tính nhanh A=\(\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{3^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(A=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{3^3}\right)....\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(A=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)....\left(\dfrac{1}{125}-\dfrac{1}{5^3}\right).....\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(A=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)....0......\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
\(A=0\)
\(A=\left(2\dfrac{1}{3}+3\dfrac{1}{2}\right):\left(-4\dfrac{1}{6}+3\dfrac{1}{7}\right)+7\dfrac{1}{2}\)
\(B=4\dfrac{25}{16}+25\cdot\left(\dfrac{9}{16}:\dfrac{125}{64}\right):\left(-\dfrac{27}{8}\right)\)
giải hộ mk nhanh nhanh nhoa ☺
bài 1:tính
a)\(\left(\dfrac{-7}{15}-\dfrac{27}{70}\right)-\left(\dfrac{8}{15}+\dfrac{43}{70}\right)\)
b)\(\dfrac{3}{7}+\left(\dfrac{-1}{5}+\dfrac{-3}{7}\right)\)
c)\(\left(4-\dfrac{12}{5}\right).\dfrac{25}{8}-\dfrac{2}{5}:\dfrac{-4}{25}\)
d)\(\left(\dfrac{-5}{24}+\dfrac{3}{4}-\dfrac{7}{12}\right):\left(-\dfrac{5}{16}\right)\)
e)\(\dfrac{-5}{7}.\dfrac{2}{11}+\dfrac{-5}{7}.\dfrac{9}{11}\)
g)\(\dfrac{6}{7}+\dfrac{5}{4}:\left(-5\right)-\dfrac{-1}{28}.\left(-2\right)^2\)
Giải:
a)(-7/15-27/70)-(8/15+43/70)
=-7/15-27/70-8/15-43/70
=(-7/15-8/15)+(-27/70-43/70)
=-1+(-1)
=-2
b)3/7+(-1/5+-3/7)
=3/7-1/5+-3/7
=(3/7+-3/7)-1/5
=0-1/5
=-1/5
c)(4-12/5).25/8-2/5:-4/25
=8/5.25/8-(-5/2)
=5+5/2
=15/2
d)(-5/24+3/4-7/12):(-5/16)
=-1/24:(-5/16)
=2/15
e)-5/7.2/11+-5/7.9/11
=-5/7.(2/11+9/11)
=-5/7.1
=-5/7
g)6/7+5/4:(-5)-(-1/28).(-2)2
=6/7+(-1/4)-(-1/28).4
=6/7+(-1/4)-(-1/7)
=6/7-1/4+1/7
=(6/7+1/7)-1/4
=1-1/4
=3/4
Chúc bạn học tốt!
\(a,\dfrac{-8}{5}:\left(1+\dfrac{2}{3}\right)\) \(b,\dfrac{7}{5}x\dfrac{15}{49}-\left(\dfrac{4}{5}+\dfrac{2}{3}\right):\dfrac{11}{5}\)
\(c,\dfrac{1}{3}:\left(\dfrac{2}{9}-\dfrac{7}{8}\right)\) \(d,\left(\dfrac{1}{6}-\dfrac{4}{5}\right):\dfrac{7}{5}\)
Giúp mik nha:>>
A -\(\dfrac{24}{25}\)
B -\(\dfrac{5}{21}\)
C -\(\dfrac{24}{47}\)
D -\(\dfrac{19}{42}\)
tick cho mk
Tính:
\(\left(\dfrac{9}{25}-2.18\right):\left(3\dfrac{4}{5}+0,2\right)\)
\(\dfrac{3}{8}.19\dfrac{1}{3}\dfrac{3}{8}.33\dfrac{1}{3}\)
\(15.\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{3}\)
\(\dfrac{1}{2}\sqrt{64}-\sqrt{\dfrac{4}{25}}+\left(-1\right)^{2007}\)
\(\left(-\dfrac{5}{2}\right)^2:\left(-15\right)-\left(0,45+\dfrac{3}{4}\right).\left(-1\dfrac{5}{9}\right)\)
\(\left(\dfrac{-1}{3}\right)-\left(\dfrac{-3}{5}\right)^0+\left(1-\dfrac{1}{2}\right)^2:2\)
\(\left(\dfrac{1}{2}\right)^{15}.\left(\dfrac{1}{4}\right)^{20}\)
\(\dfrac{5^4.20}{25^5.4^5}\)
a) Ta có: \(\left(\dfrac{9}{25}-2\cdot18\right):\left(3\dfrac{4}{5}+0.2\right)\)
\(=\left(\dfrac{9}{25}-36\right):\left(\dfrac{19}{5}+\dfrac{1}{5}\right)\)
\(=\left(\dfrac{9}{25}-\dfrac{900}{25}\right):\dfrac{20}{5}\)
\(=\dfrac{-891}{25}\cdot\dfrac{1}{4}\)
\(=-\dfrac{891}{100}\)
b) Ta có: \(\dfrac{3}{8}\cdot19\dfrac{1}{3}+\dfrac{3}{8}\cdot33\dfrac{1}{3}\)
\(=\dfrac{3}{8}\cdot\dfrac{58}{3}+\dfrac{3}{8}\cdot\dfrac{100}{3}\)
\(=\dfrac{58}{8}+\dfrac{100}{8}\)
\(=\dfrac{158}{8}=\dfrac{79}{4}\)
c) Ta có: \(15\cdot\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{3}\)
\(=15\cdot\dfrac{4}{9}-\dfrac{7}{3}\)
\(=\dfrac{20}{3}-\dfrac{7}{3}\)
\(=\dfrac{13}{3}\)
d) Ta có: \(\dfrac{1}{2}\sqrt{64}-\sqrt{\dfrac{4}{25}}+\left(-1\right)^{2007}\)
\(=\dfrac{1}{2}\cdot8-\dfrac{2}{5}-1\)
\(=4-1-\dfrac{2}{5}\)
\(=3-\dfrac{2}{5}\)
\(=\dfrac{15}{5}-\dfrac{2}{5}=\dfrac{13}{5}\)
e) Ta có: \(\left(-\dfrac{5}{2}\right)^2:\left(-15\right)-\left(0.45+\dfrac{3}{4}\right)\cdot\left(-1\dfrac{5}{9}\right)\)
\(=\dfrac{25}{4}\cdot\dfrac{-1}{15}-\left(\dfrac{9}{20}+\dfrac{15}{20}\right)\cdot\dfrac{-14}{9}\)
\(=\dfrac{-25}{60}-\dfrac{24}{20}\cdot\dfrac{-14}{9}\)
\(=\dfrac{-25}{60}+\dfrac{28}{15}\)
\(=\dfrac{-25}{60}+\dfrac{112}{60}\)
\(=\dfrac{87}{60}=\dfrac{29}{20}\)
f) Ta có: \(\left(-\dfrac{1}{3}\right)-\left(-\dfrac{3}{5}\right)^0+\left(1-\dfrac{1}{2}\right)^2:2\)
\(=-\dfrac{1}{3}-1+\left(\dfrac{1}{2}\right)^2\cdot\dfrac{1}{2}\)
\(=\dfrac{-4}{3}+\dfrac{1}{4}\cdot\dfrac{1}{2}\)
\(=\dfrac{-4}{3}+\dfrac{1}{8}\)
\(=\dfrac{-32}{24}+\dfrac{3}{24}=\dfrac{-29}{24}\)
g) Ta có: \(\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{4}\right)^{20}\)
\(=\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{2}\right)^{40}\)
\(=\left(\dfrac{1}{2}\right)^{55}\)
\(=\dfrac{1}{2^{55}}\)
h) Ta có: \(\dfrac{5^4\cdot20}{25^5\cdot4^5}\)
\(=\dfrac{5^4\cdot5\cdot2^2}{5^{10}\cdot2^{10}}\)
\(=\dfrac{5^5}{5^{10}}\cdot\dfrac{2^2}{2^{10}}\)
\(=\dfrac{1}{5^5}\cdot\dfrac{1}{2^8}\)
\(=\dfrac{1}{800000}\)