Rút gọn biểu thức
a) (x + 2)2 + (x – 2)2
b) (x – 3)(x + 3) – (x – 3)(x + 1)
rút gọn biểu thức
a)A= (2x - 3)^2 - (2x + 3)^2
b)B= (x +1)^2 -2 (2x-1) (1+ x) +4x^2 - 4x + 1
`@` `\text {Ans}`
`\downarrow`
`A= (2x - 3)^2 - (2x + 3)^2`
`= [(2x - 3) - (2x + 3)]*[(2x - 3) + (2x + 3)]`
`= (2x - 3 - 2x - 3) * (2x - 3 + 2x + 3)`
`= -6 * 4x`
`= -24x`
`A=(2x-3)^2-(2x+3)^2`
`A=(2x-3-2x-3)(2x-3+2x+3)`
`A=-6.4x=-24x`
b: B=(x+1)^2-2(2x-1)(x+1)+4x^2-4x+1
=(x+1)^2-2(2x-1)(x+1)+(2x-1)^2
=(x+1-2x+1)^2
=(-x+2)^2=x^2-4x+4
Bài 1:Rút gọn rồi tính giá trị biểu thức
a,A=(x-1)^3-4x(x+1)(x-1)+3(x-1)(x^2+x+1) với x=2
b,B=126y^3+(x-5y)(x^2+25y^2+5xy) với x=-5,y=-3
c,C=a^3+b^3-(a^2-2ab+b^2)(a-b) với a=-4,b=4
a/ \(A=\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)
\(=-3x^2+7x-4\)
Thay x = 2 vào A được:
\(=-3.2^2+7.2-4=-2\)
Vậy: Giá trị của A khi x = 2 là -2
==========
b/ \(B=126y^3+\left(x-5y\right)\left(x^2+25y^2+5xy\right)\)
\(=126y^3+x^3-125y^3\)
Thay x = -5 và y = -3 vào B được:
\(126.\left(-3\right)^3+\left(-5\right)^3-125.\left(-3\right)^3=-152\)
Vậy: Giá trị của B tại x = -5 và y = -3 là -152
==========
c/ \(C=a^3+b^3-\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3+b^3-\left(a-b\right)^3\)
\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3\)
\(=2b^3+3a^2b-3ab^2\)
Thay a = -4 và b = 4 vào C được:
\(2.4^3+3.\left(-4\right)^2.4-3.\left(-4\right).4^2=512\)
Vậy: Giá trị của C tại a = -4 vào b = 4 là 512
a:Ta có: \(A=\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)
\(=-3x^2+7x-4\)
\(=-3\cdot2^2+7\cdot2-4\)
\(=-12-4+14=-2\)
c: Ta có: \(C=a^3+b^3-\left(a-b\right)\left(a^2-2ab+b^2\right)\)
\(=a^3+b^3-a^3+3a^2b-3ab^2+b^3\)
\(=2b^3+3a^2b-3ab^2\)
\(=2\cdot4^3+3\cdot\left(-4\right)^2\cdot4-3\cdot\left(-4\right)\cdot4^2\)
\(=128+192+192=512\)
1/ Rút gọn biểu thức
a/ ( x+y)2 - ( x-y)2
b/ ( x+y)2+ ( x-y)2- 2. ( x+y). (x-y)
c/ ( x2-1). ( x2-x+1)
\(a,\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=4xy\\ b,\left(x+y\right)^2+\left(x-y\right)^2-2\left(x+y\right)\left(x-y\right)=\left(x+y-x+y\right)^2=4y^2\\ c,\left(x^2-1\right)\left(x^2-x+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\\ =\left(x-1\right)\left(x^3+1\right)\\ =x^4-x^3+x-1\)
a. (x + y)2 - (x - y)2
= (x + y - x + y)(x + y + x - y)
= 2y . 2x
= 4xy
b. (x + y)2 + (x - y)2 - 2(x + y)(x - y)
= (x2 + 2xy + y2) + (x2 - 2xy + y2) - 2(x2 - y2)
= x2 + 2xy + y2 + x2 - 2xy + y2 - 2x2 + 2y2
= x2 + x2 - 2x2 + 2xy - 2xy + y2 + y2 + 2y2
= 4y2
c. (x2 - 1)(x2 - x + 1)
= x4 - x3 + x2 - x2 + x - 1
= x4 - x3 + x - 1
a: \(\left(x+y\right)^2-\left(x-y\right)^2=4xy\)
b: \(\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2=\left(x+y-x+y\right)^2=4y^2\)
c: \(\left(x^2-1\right)\cdot\left(x^2-x+1\right)\)
\(=\left(x^3+1\right)\left(x-1\right)\)
\(=x^4-x^3+x-1\)
rút gọn biểu thức
a) (2x + 1)(x – 3) – 4x(5 – 2x)
b) (x + 2)2 – 2(x + 3)(x - 3) + 10
c) (4x – 3)(2 – x 2 ) – 2(x – 3)2 – 7x3
a: \(=2x^2-6x+x-3-20x+8x^2\)
\(=10x^2-25x-3\)
b: \(=x^2+4x+4-2\left(x^2-9\right)+10\)
\(=x^2+4x+14-2x^2+18\)
\(=-x^2+4x+32\)
Tìm x
(4x+3)2+(3x-4)2+(2+5x)(2-5x)=x
Thu gọn biểu thức
a)(x-3)(x+3)-(x-3)2
b)(3x-1)2+2(3x-1)(2x+1)+(2x+1)2
giúp mình với ;-;
1) \(\Rightarrow16x^2+24x+9+9x^2-24x+16+4-25x^2=x\)
\(\Rightarrow x=29\)
2)
a) \(=x^2-9-x^2+6x-9=6x-18\)
b) \(=\left(3x-1+2x+1\right)^2=\left(5x\right)^2=25x^2\)
rút gọn biểu thức
a) A=(x+2)3-(x-2)3-12x2
\(A=\left(x+2\right)^3-\left(x-2\right)^3-12x^2=x^3+6x^2+12x+8-x^3+6x^2-12x+8-12x^2=16\)
1) Rút gọn biểu thức
A=\(\left(\dfrac{x\sqrt{x}+x-2}{x-1}-\dfrac{\sqrt{x}+2}{x+3\sqrt{x}+2}\right).\dfrac{\sqrt{x}-1}{2x+\sqrt{x}-3}\)
Lời giải:
ĐK: $x\geq 0; x\neq 1$
\(A=\left[\frac{(\sqrt{x}-1)(x+2\sqrt{x}+2)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{\sqrt{x}+2}{(\sqrt{x}+1)(\sqrt{x}+2)}\right].\frac{\sqrt{x}-1}{(\sqrt{x}-1)(2\sqrt{x}+3)}\)
\(=\left(\frac{x+2\sqrt{x}+2}{\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\frac{1}{2\sqrt{x}+3}=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\frac{1}{2\sqrt{x}+3}=\frac{(\sqrt{x}+1)^2}{(\sqrt{x}+1)(2\sqrt{x}+3)}=\frac{\sqrt{x}+1}{2\sqrt{x}+3}\)
rút gọn rồi tính giá trị biểu thức
A = ( x - y )2 + ( x + y )2 - x( 2x + 1 ) tại x = 2 ; y = - 3
B = ( x + 3 )2 + ( x + 3 )( x - 3 ) - ( x + 2 )( 2x - 8 ) tại x = -1/2
a: \(A=x^2-2xy+y^2+x^2+2xy+y^2-2x^2-x\)
=-x
=-2
rút gọn các biểu thức
a) (x+1)2-(x-1)2-3(x+1)(x-1)
b) 5(x+2)(x-2) -1/2(6-8x)2+17
a) Ta có: \(\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)
\(=x^2+2x+1-x^2+2x-1-3\left(x^2-1\right)\)
\(=4x-3x^2+3\)
\(=-3x^2+4x+3\)
b) Ta có: \(5\left(x+2\right)\left(x-2\right)-\dfrac{1}{2}\left(6-8x\right)^2+17\)
\(=5\left(x^2-4\right)-\dfrac{1}{2}\left(64x^2-96x+36\right)+17\)
\(=5x^2-20-32x^2+48x-16+17\)
\(=-27x^2+48x-19\)