Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tuyết Linh Linh

1) Rút gọn biểu thức

A=\(\left(\dfrac{x\sqrt{x}+x-2}{x-1}-\dfrac{\sqrt{x}+2}{x+3\sqrt{x}+2}\right).\dfrac{\sqrt{x}-1}{2x+\sqrt{x}-3}\)

 

 

Akai Haruma
2 tháng 3 2021 lúc 20:04

Lời giải:

ĐK: $x\geq 0; x\neq 1$

\(A=\left[\frac{(\sqrt{x}-1)(x+2\sqrt{x}+2)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{\sqrt{x}+2}{(\sqrt{x}+1)(\sqrt{x}+2)}\right].\frac{\sqrt{x}-1}{(\sqrt{x}-1)(2\sqrt{x}+3)}\)

\(=\left(\frac{x+2\sqrt{x}+2}{\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\frac{1}{2\sqrt{x}+3}=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\frac{1}{2\sqrt{x}+3}=\frac{(\sqrt{x}+1)^2}{(\sqrt{x}+1)(2\sqrt{x}+3)}=\frac{\sqrt{x}+1}{2\sqrt{x}+3}\)


Các câu hỏi tương tự
thu dinh
Xem chi tiết
thu dinh
Xem chi tiết
thu dinh
Xem chi tiết
Tuyết Linh Linh
Xem chi tiết
KYAN Gaming
Xem chi tiết
nguyen ngoc son
Xem chi tiết
thu dinh
Xem chi tiết
Tuyết Linh Linh
Xem chi tiết
KYAN Gaming
Xem chi tiết