Cho hàm số y = f ( x ) thỏa mãn lim x → - ∞ f ( x ) = 2019 m , lim x → + ∞ f ( x ) = 2020 m 4 (với m là tham số thực). Hỏi có tất cả bao nhiêu giá trị của m để đồ thị của hàm số y = f ( x ) có duy nhất một tiệm cận ngang?
A. 4
B. 2
C. 3
D. 1
cho hàm số f(x) thỏa mãn: \(\lim\limits_{x\rightarrow1^+}f\left(x\right)=2\) và \(\lim\limits_{x\rightarrow1^-}f\left(x\right)=2\). tính giá trị \(\lim\limits_{x\rightarrow1}f\left(x\right)=?\)
\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)\Rightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=2\)
cho hàm số \(y=f\left(x\right)\) liên tục trên R thỏa
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=+\infty\) , \(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=-\dfrac{1}{2}\)
tìm số đường tiệm cận củ đồ thị hàm số đã cho
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=+\infty\)
Hàm số có 1 tiệm cận ngang là \(y=-\dfrac{1}{2}\)
Biết rằng hàm số \(f\left( x \right)\) thỏa mãn \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 3\) và \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 5.\) Trong trường hợp này có tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) hay không? Giải thích.
Vì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 3 \ne \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 5\) nên không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)
Xét các khẳng định sau
i) Nếu hàm số y = f(x) xác định trên [-1;1] thì tồn tại α ∈ - 1 ; 1 thỏa mãn f ( x ) ≥ f ( α ) ∀ x ∈ - 1 ; 1 .
ii) Nếu hàm số y = f(x) xác định trên [-1;1] thì tồn tại β ∈ - 1 ; 1 thỏa mãn f ( x ) ≤ f ( β ) ∀ x ∈ - 1 ; 1 .
iii) Nếu hàm số y = f(x) xác định trên [-1;1] thỏa mãn f(-1).f(1)<0 thì tồn tại γ ∈ - 1 ; 1 thỏa mãn f ( γ ) = 0
Số khẳng định đúng là
A. 3.
B. 2.
C. 1.
D. 0.
Xác định một hàm số \(y=f\left(x\right)\) thỏa mãn đồng thời các điều kiện sau :
a) \(f\left(x\right)\) xác định trên R\{1}
b) \(\lim\limits_{x\rightarrow1}f\left(x\right)=+\infty;\lim\limits_{x\rightarrow+\infty}f\left(x\right)=2;\lim\limits_{x\rightarrow-\infty}f\left(x\right)=2\)
thì f(x) thỏa mãn được tất cả các điều kiện đã nêu
Cho hàm số y = f(x) thỏa mãn f ( 0 ) = 0 ; f ' ( x ) = x x 2 + 1 . Họ nguyên hàm của hàm số g ( x ) = 4 xf ( x ) là:
A . ( x 2 + 1 ) ln ( x 2 ) - x 2 + c
B . x 2 ln ( x 2 + 1 ) - x 2
C . ( x 2 + 1 ) ln ( x 2 + 1 ) - x 2 + c
D . ( x 2 + 1 ) ln ( x 2 + 1 ) - x 2
Cho hàm số y=f(x) thỏa mãn f(-x)=f(x). Gọi đồ thị hàm số là (C). Chọn khẳng định đúng
Cho hàm số y = f(x)
Biết hàm số đã cho thỏa mãn hệ thức ∫ f x sin x d x = - f x cos x + ∫ π 2 cosxdx . Hỏi hàm số y = f(x) là hàm số nào trong các hàm số sau?
A. .
B. .
C. .
D. .
Cho hàm số y=f(x) thỏa mãn f(x+y)=f(x).f(y) . Biết f(2019)=2020. tính f(2020)
Ta có:\(f\left(x\right).f\left(y\right)=f\left(x.y\right)\)
\(\Rightarrow f\left(x+y\right)=f\left(x.y\right)\)
\(\Rightarrow f\left(2019\right)=f\left(0+2019\right)=f\left(0.2019\right)=f\left(0\right)=2020\)
\(\Rightarrow f\left(2020\right)=f\left(0+2020\right)=f\left(0.2020\right)=f\left(0\right)\)
\(\Rightarrow f\left(2019\right)=f\left(2020\right)=f\left(0\right)=2020\)
khó quá.
Tại sao : \(f\left(0+2019\right)=f\left(0.2019\right)\)? logic, hay do mk ngu ... 2019 = 0 à ?
1. Cho hs y=f(x) có đạo hàm thỏa mãn f'(6)=2. Tính giá trị biểu thức lim \(_{x->6}\)\(\dfrac{f\left(x\right)-f\left(6\right)}{x-6}\)
2. Gọi d là tiếp tuyến của hs y=\(\dfrac{x-1}{x+2}\) tại điểm có hoàng độ bằng -3. Khi đó d tạo với 2 trục tọa độ 1 tam giác có diện tích là bao nhiêu?
3. Cho lim \(_{x->2}\)\(\dfrac{\sqrt{3x+3}-m}{x-2}\)=\(\dfrac{a}{b}\)với m là số thực và \(\dfrac{a}{b}\)tối giản. Tính 2a-b
4. Cho hàm số y=f(x) xác định và có đạo hàm trên tập số thực. Biết f'(1)=5 và f(1)=6. Tìm giới hạn lim \(_{x->1}\)\(\dfrac{f^2\left(x\right)-f\left(x\right)-30}{\sqrt{x}-1}\)
5. Cho tam giác ABC có 2 trung tuyến kẻ từ A đến B vuông góc với nhau. Khi đó tỉ số \(\dfrac{AC+BC}{AB}\)đạt giá trị lớn nhất bằng bao nhiêu(làm tròn đến hàng phần trăm)
6. Cho tứ diện ABCD có (ACD) vuông góc (BCD), AC=AD=BC=BD=a và CD=2x. Gọi I và J lần lượt là trung điểm của AB và CD. Với giá trị nào của x thì (ABC) vuông góc với (ABD)?
1/ L'Hospital:
\(=\lim\limits_{x\rightarrow6}f'\left(x\right)=f'\left(6\right)=2\)
3/ \(=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{3}{2\sqrt{3x+3}}}{1}=\dfrac{1}{2}\Rightarrow2a-b=0\)
4/ \(=\lim\limits_{x\rightarrow1}\dfrac{2f\left(x\right).f'\left(x\right)-f'\left(x\right)}{\dfrac{1}{2\sqrt{x}}}=\dfrac{2.6.5-5}{\dfrac{1}{2}}=110\)
2/ \(x_0=-3\Rightarrow y_0=\dfrac{-3-1}{-3+2}=\dfrac{-4}{-1}=4\)
\(y'=\dfrac{\left(x-1\right)'\left(x+2\right)-\left(x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}=\dfrac{x+2-x+1}{\left(x+2\right)^2}=\dfrac{3}{\left(x+2\right)^2}\)
\(\Rightarrow y'\left(-3\right)=3\)
\(\Rightarrow pttt:y=3\left(x+3\right)+4=3x+13\)
\(x=0\Rightarrow y=13;y=0\Rightarrow x=-\dfrac{13}{3}\)
\(\Rightarrow S=\dfrac{1}{2}.\left|x\right|\left|y\right|=\dfrac{1}{2}.\dfrac{13}{3}.13=\dfrac{169}{6}\left(dvdt\right)\)
P/s: Câu 5,6 bỏ qua nhé, toi ngu hình học :b