\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)\Rightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=2\)
\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)\Rightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=2\)
cho f(x) là 1 đa thức thoa man \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-16}{x-1}=24\). tính \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-16}{\left(x-1\right)\left(\sqrt{2f\left(x\right)+4}+6\right)}\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{4x+5}+x}{\left(x^2+3x+2\right)}\)
Cho n là số nguyên dương \(\ge2\). Tìm giới hạn sau :
\(L=\lim\limits_{x\rightarrow1}\frac{x^n-nx+n-1}{\left(x-1\right)^2}\)
Tính:
\(\lim\limits_{x\rightarrow1}\dfrac{x+x^2+...+x^n-n}{x-1}\)
\(\lim\limits_{x\rightarrow1}\dfrac{x^3+3x^2-4}{x-1}\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3x^2+2x-1}-2}{x^2-1}\)
\(\lim\limits_{x\rightarrow1}\dfrac{3-2x^2-x^4}{5-3x-2x^2}\)
cho m, n là các số thực khác 0. nếu \(\lim\limits_{x\rightarrow1}\dfrac{x^2+mx+n}{x-1}=3\) thì m.n=?
cho \(\lim\limits_{x\rightarrow-\infty}\dfrac{a\sqrt{x^2+1}+2017}{x+2018}=\dfrac{1}{2}\); \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+bx+1}-x\right)=2\). Tính P=4a+b