Tìm x ∈ N , biết.
a) 3 x + 1 : 3 4 = 81
b) 3 x + 3 . 3 x + 1 = 729
c) 2 x + 3 . 2 x = 128
d) 23 + 3 x = 5 6 : 5 3
e) 2 x + 2 x + 4 = 272
bài 15 :tìm x∈Q, biết.
a) ( x - 3).( x +4 ) > 0 b)( x + 2).( x - 5) < 0
a: \(\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -4\end{matrix}\right.\)
b: -2<x<5
Tìm x biết.
a)(x+2)3-x2(x+6)=0
b) (2x+3)3-8x(x-1)(x+1)=9x(4x-3)
c)(2-x)3+(2+x)3-12x(x+1)=0
a) \(\left(x+2\right)^3-x^2\left(x+6\right)=0\)
\(\Leftrightarrow x^3+6x^2+12x+8-x^3-6x^2=0\)
\(\Leftrightarrow12x+8=0\)
\(\Leftrightarrow12x=-8\)
\(\Leftrightarrow x=-\dfrac{8}{12}\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
b) \(\left(2x+3\right)^3-8x\left(x+1\right)\left(x-1\right)=9x\left(4x-3\right)\)
\(\Leftrightarrow8x^3+36x^2+54x+27-8x\left(x^2-1\right)=36x^2-27x\)
\(\Leftrightarrow8x^3+36x^2+54x+27-8x^3+8x=36x^2-27x\)
\(\Leftrightarrow8x^3-8x^3+36x^2-36x^2+54x+27x+8x+27=0\)
\(\Leftrightarrow89x+27=0\)
\(\Leftrightarrow x=-\dfrac{27}{89}\)
c) \(\left(2-x\right)^3+\left(2+x\right)^3-12x\left(x+1\right)=0\)
\(\Leftrightarrow8-12x+6x^2-x^3+8+12x+6x^2+x^3-12x^2-12x=0\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(6x^2+6x^2-12x^2\right)-\left(12x-12x\right)+12x+\left(8+8\right)=0\)
\(\Leftrightarrow12x+16=0\)
\(\Leftrightarrow x=-\dfrac{16}{12}\)
\(\Leftrightarrow x=-\dfrac{4}{3}\)
`#040911`
`a)`
`(x + 2)^3 - x^2(x + 6) = 0`
`<=> x^3 + 6x^2 + 12x + 8 - x^3 - 6x^2 = 0`
`<=> (x^3 - x^3) + (6x^2 - 6x^2) + 12x = 0`
`<=> 12x = 0`
`<=> x = 0`
Vậy, `x = 0.`
`b)`
`(2x + 3)^3 - 8x(x - 1)(x + 1) = 9x(4x - 3)`
`<=> 8x^3 + 36x^2 + 54x + 27 - 8x(x^2 - 1) = 36x^2 - 27x`
`<=> 8x^3 + 36x^2 + 54x + 27 - 8x^3 + 8x - 36x^2 + 27x = 0`
`<=> (8x^3 - 8x^3) + (36x^2 - 36x^2) + (54x + 8x + 27x) + 27 = 0`
`<=> 89x + 27 = 0`
`<=> 89x = -27`
`<=> x = -27/89`
Vậy, `x = -27/89`
`c)`
`(2 - x)^3 + (2 + x)^3 - 12x(x + 1) = 0`
`<=> 8 - 12x + 6x^2 - x^3 + 8 + 12x + 6x^2 + x^3 - 12x^2 - 12x = 0`
`<=> (-x^3 + x^3) + (12x - 12x - 12x) + (6x^2 + 6x^2 - 12x^2) + (8 + 8)=0`
`<=> -12x + 16 = 0`
`<=> -12x = -16`
`<=> 12x = 16`
`<=> x=4/3`
Vậy, `x = 4/3.`
Bài 22: Tìm x, biết.
a, 25x2-9=0
b, (x+4)2-(x+1) (x-1)
c, (2x-1)2+(x+3)2-5(x+7) (x-7)=0
Mọi người trình bày đầy đủ hộ e với!
Bài 4: Tìm x, biết.
a) 4x(x - 7) - 4x2 = 56
b) 12x(3x - 2) - (4 - 6x) = 0
c) 4(x - 5) - (5 - x)2 = 0
d) x(x +1) - x(x - 3) = 0
e) - 6x + 8 = 0 f) 2 + 2x + = 0
c: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
Tìm x, y ∈ Z biết.
a) (x + 1)(y – 2) = 0
b) (x – 5)(y – 7) = 1
c) (x + 4)(y – 2) = 2
d) (x + 3)(y – 6) = -4
e) (x + 7)(5 – y) = -6
f) (12 – x)(6 – y) = -2
Bài toán 7 : Tìm x N, biết.
a) 3x . 3 = 243 | b) 2x . 162 = 1024 | c) 64.4x = 168 | d) 2x = 16 |
a) \(3^x\cdot3=243\)
\(\Rightarrow3^{x+1}=243\)
\(\Rightarrow3^{x+1}=3^5\)
\(\Rightarrow x+1=5\)
\(\Rightarrow x=4\)
b) \(2^x\cdot162=1024\)
Xem lại đề
c) \(64\cdot4^x=168\)
Xem lại đề
d) \(2^x=16\)
\(\Rightarrow2^x=2^4\)
\(\Rightarrow x=4\)
a: =>3^x=81
=>x=4
b: =>2^x=1024/16^2=4
=>x=2
c: =>4^x=16^8/64=4^16/4^3=4^13
=>x=13
9. Tìm x, y biết.
a) |x-2|+|2x+y|≤0
b) |x-2|+|x-5|≤3
a) |x-2|+|2x+y|≤0
|x-2| ≥ 0
|2x+y|≥ 0
mà |x-2|+|2x+y|≤0⇒|x-2|+|2x+y|=0
⇒|x-2|=0⇒x=2
|2x+y|=0⇒|2.2+y|=0⇒|4+y|=0⇒y=-4
vậy (x,y)={(2;-4)}
Bài1: Thực hiện phép tính
a) 2x(3x2 – 5x + 3) b) - 2x ( x2 + 5x+3)
Bài 4: Tìm x, biết.
a/ 3x + 2(5 – x) = 0 b/ x(2x – 1)(x + 5) – (2x2 + 1)(x + 4,5) = 3,5
c/ 3x2 – 3x(x – 2) = 36.
II. PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
Bài1: Phân tích đa thức thành nhân tử.
a/ 14x2y – 21xy2 + 28x2y2 b/ x(x + y) – 5x – 5y.
c/ 10x(x – y) – 8(y – x). d/ (3x + 1)2 – (x + 1)2
e/ 5x2 – 10xy + 5y2 – 20z2. f/ x2 + 7x – 8
g/ x3 – x + 3x2y + 3xy2 + y3 – y h/ x2 + 4x + 3.
Bài 1:
a: \(=6x^3-10x^2+6x\)
b: \(=-2x^3-10x^2-6x\)
Bài 4:
a: =>3x+10-2x=0
=>x=-10
c: =>3x2-3x2+6x=36
=>6x=36
hay x=6
Bài 1:
\(a,=6x^3-10x^2+6x\\ b,=-2x^3-10x^2-6x\)
Bài 4:
\(a,\Leftrightarrow3x+10-2x=0\Leftrightarrow x=-10\\ b,\Leftrightarrow x\left(2x^2+9x-5\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\\ \Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4,5=3,5\\ \Leftrightarrow-6x=8\Leftrightarrow x=-\dfrac{4}{3}\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\)
Bài 1:
\(a,=7xy\left(2x-3y+4xy\right)\\ b,=x\left(x+y\right)-5\left(x+y\right)=\left(x-5\right)\left(x+y\right)\\ c,=\left(x-y\right)\left(10x+8\right)=2\left(5x+4\right)\left(x-y\right)\\ d,=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\\ =2x\left(4x+2\right)=4x\left(2x+1\right)\\ e,=5\left[\left(x-y\right)^2-4z^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x^2+8x-x-8=\left(x+8\right)\left(x-1\right)\\ g,\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\\ h,=x^2+3x+x+3=\left(x+3\right)\left(x+1\right)\)
Bài 1 (1,5 điểm). Tính bằng cách hợp lý.
a) 42. 53 + 47. 156 – 47. 114
b) 1152 – (374 + 1152) + (-65 + 374)
c) 1 – 2 + 3 – 4 + 5 – 6 + …- 210 + 211
Bài 2 (1,5 điểm). Tìm số nguyên x biết.
a) 5x + 3 – 5x + 2 = 12 500
b) (3x – 7) – (2x + 2) = - 15
Bài 3 (1,5 điểm). Chứng tỏ rằng:
a) 1 + 3 + 32 + 33 + … + 311 13
b) 4n + 3 và 6n + 5 nguyên tố cùng nhau với mọi n thuộc N
Bài 1:
a: =42x53+47x42
=42x100
=4200
b: =1152-374-1152-65+374=-65
c: =(-1)+(-1)+...+(-1)+211
=211-105
=106
Tìm x thuộc z,biết.a,-4[x-5] bé hơn 0.b,[x-2][x-6]bé hơn 0
\(a.-4\left(x-5\right)< 0\)
\(\Leftrightarrow x-5>0\)
\(\Leftrightarrow x>5\)
\(b.\left(x-2\right)\left(x-6\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x-6< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x-6>0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2< x< 6\left(n\right)\\6< x< 2\left(l\right)\end{matrix}\right.\)
a) Ta có: \(-4\cdot\left(x-5\right)< 0\)
\(\Leftrightarrow-4\) và x-5 khác dấu
mà -4<0
nên x-5>0
hay x>5
Vậy: x>5
b) Ta có: \(\left(x-2\right)\left(x-6\right)< 0\)
\(\Leftrightarrow x-2;x-6\) khác dấu
Trường hợp 1:
\(\left\{{}\begin{matrix}x-2>0\\x-6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< 6\end{matrix}\right.\Leftrightarrow2< x< 6\)
Trường hợp 2:
\(\left\{{}\begin{matrix}x-2< 0\\x-6>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\x>6\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy: 2<x<6