Cho phương trình 2(x + 2) – 7 = 3 – x.
x = - 2 có thỏa mãn phương trình không?
Cho phương trình 2(x + 3) – 3 = 3 – x.
x = - 3 có thỏa mãn phương trình không
Với x = -3 thì
VT = 2(x + 3) – 3 = 2(– 3 + 3) – 3 = 2. 0 – 3 = 0 – 3 = – 3
Ta có: VP = 3 – x = 3 – (– 3) = 6 ≠ – 3
Vậy x = - 3 không thỏa mãn phương trình
Cho phương trình \(\sqrt {{x^2} - 3x + 2} = \sqrt { - {x^2} - 2x + 2} \)
a) Bình phương hai vế của phương trình để khử căn và giải phương trình bậc hai nhận được
b) Thử lại các giá trị x tìm được ở câu a có thỏa mãn phương trình đã cho hay không
a) Bình phương hai vế của phương trình\(\sqrt {{x^2} - 3x + 2} = \sqrt { - {x^2} - 2x + 2} \)ta được:
\({x^2} - 3x + 2 = - {x^2} - 2x + 2\)(1)
Giải phương trình trên ta có:
\((1) \Leftrightarrow 2{x^2} - x = 0\)
\( \Leftrightarrow x(2x - 1) = 0\)
\( \Leftrightarrow x = 0\) hoặc \(x = \frac{1}{2}\)
b) Thử lại ta có:
Với x=0, thay vào phương trình đã cho ta được: \(\sqrt {{0^2} - 3.0 + 2} = \sqrt { - {0^2} - 2.0 + 2} \Leftrightarrow \sqrt 2 = \sqrt 2 \) (luôn đúng)
Với \(x = \frac{1}{2}\), thay vào phương trình đã cho ta được:
\(\sqrt {{{\left( {\frac{1}{2}} \right)}^2} - 3.\frac{1}{2} + 2} = \sqrt { - {{\left( {\frac{1}{2}} \right)}^2} - 2.\frac{1}{2} + 2} \Leftrightarrow \sqrt {\frac{3}{4}} = \sqrt {\frac{3}{4}} \) (luôn đúng)
Vậy các giá trị x tìm được ở câu a thỏa mãn phương trình đã cho.
3/ Cho phương trình x ^ 2 - 2(m - 3) * x + m ^ 2 + 3 = 0 phương trình có hai nghiệm phân biệt x 1 ,x 2 thỏa mãn x 1 ^ 2 +x 2 ^ 2 =86
\(\Delta'=\left(m-3\right)^2-\left(m^2+3\right)=-6m+6>0\Rightarrow m< 1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=m^2+3\end{matrix}\right.\)
\(x_1^2+x_2^2=86\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=86\)
\(\Leftrightarrow4\left(m-3\right)^2-2\left(m^2+3\right)=86\)
\(\Leftrightarrow m^2-12m-28=0\Rightarrow\left[{}\begin{matrix}m=14\left(loại\right)\\m=-2\end{matrix}\right.\)
Ta có : \(\Delta=\left(2m+6\right)^2-4\left(m^2+3\right)=4m^2+24m+36-4m^2-12=24m+24\)
Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
\(24m+24>0\Leftrightarrow24m>-24\Leftrightarrow m>-1\)
Theo hệ thức Viet :\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+6\\x_1x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)
mà \(\left(x_1+x_2\right)^2=\left(2m+6\right)^2\Leftrightarrow x_1^2+x_2^2=4m^2+24m+36-2x_1x_2\)
\(\Leftrightarrow x_1^2+x_2^2=4m^2+24m+36-2m^2-6=2m^2+24m+30\)
Lại có : \(x_1^2+x_2^2=86\)hay \(2m^2+24m+30=86\Leftrightarrow2\left(m^2+12m-28\right)=0\)
\(\Leftrightarrow2\left(m-2\right)\left(m+14\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\left(chon\right)\\m=-14\left(loại\right)\end{matrix}\right.\)
Để phương trình có hai nghiệm phân biệt thì Δ > 0
=> [ -(m-3) ]2 - (m2 + 3) > 0
<=> m2 - 6m + 9 - m2 - 3 > 0
<=> -6m + 6 > 0
<=> m < 1
Vậy với m < 1 thì phương trình có hai nghiệm phân biệt
Theo hệ thức Viète ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m-6\\x_1x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)
Khi đó x12 + x22 = 86
<=> ( x1 + x2 )2 - 2x1x2 - 86 = 0
<=> ( 2m - 6 )2 - 2( m2 + 3 ) - 86 = 0
<=> 4m2 - 24m + 36 - 2m2 - 6 - 86 = 0
<=> 2m2 - 24m - 56 = 0
<=> m2 - 12m - 28 = 0
Δ' = b'2 - ac = 36 + 28 = 64
Δ' > 0, áp dụng công thức nghiệm thu được m1 = 14 (ktm) ; m2 = -2 (tm)
Vậy với m = -2 thì thỏa mãn đề bài
Cho phương trình \(x^2-2\left(m-1\right)x-m-3=0\)
a.Giải phương trình với m=-3
b.Tìm m để phương trình (1) có 2 nghiệm thỏa mãn \(x^2_1+x^2_2=10\)
a) Với m = -3 phương trình trở thành
\(x^2+8x=0\\ \Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{0;-8\right\}\)
b. Xét phương trình \(x^2-2\left(m-1\right)x-m-3=0\)
\(\Delta'=\left(m-1\right)^2-\left(-m-3\right)=m^2-2m+1+m+3=m^2-m+4=\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)
Suy ra, phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\) (hệ thức Viet)
Ta có :
\(x_1^2+x_2^2=10\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\\ \Leftrightarrow4\left(m-1\right)^2+2\left(m+3\right)=10\\ \Leftrightarrow4m^2-6m=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(m\in\left\{0;\dfrac{3}{2}\right\}\)
cho phương trình x^2 -2(m-1)x + 2m -3 =0
tìm m để phương trình trên có 2 no x1 x2 thỏa mãn x1^2 - 2x2=7 làm ơn giải giúp em
bài 1: cho phương trình \(x^2-2\left(m+2\right)x+m-3=0\)
Tìm m sao cho
a)phương trình có 2 nghiệm thỏa mãn \(\left(2x_1+1\right)\left(2x_2+1\right)=8\)
b)phương trình có 2 nghiệm thỏa mãn\(P=x_1^2+x_2^2-3x_1x_2\) nhỏ nhất
a)
Ta có: \(\Delta=\left[-2\left(m+2\right)\right]^2-4\cdot1\cdot\left(m-3\right)\)
\(=\left(-2m-4\right)^2-4\left(m-3\right)\)
\(=4m^2+16m+16\ge0\forall x\)
Suy ra: Phương trình \(x^2-2\left(m+2\right)x+m-3=0\) luôn có nghiệm với mọi m
Áp dụng hệ thức Viet, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)=2m+4\\x_1\cdot x_2=m-3\end{matrix}\right.\)
Ta có: \(\left(2x_1+1\right)\left(2x_2+1\right)=8\)
\(\Leftrightarrow4\cdot x_1x_2+2\cdot\left(x_1+x_2\right)+1=8\)
\(\Leftrightarrow4\left(m-3\right)+2\left(2m+4\right)+1=8\)
\(\Leftrightarrow4m-12+4m+8+1=8\)
\(\Leftrightarrow8m=8+12-8-1\)
\(\Leftrightarrow8m=11\)
hay \(m=\dfrac{11}{8}\)
Tiếp tục với bài của bạn Nguyễn Lê Phước Thịnh
b)
Ta có: \(x_1^2+x_2^2-3x_1x_2=\left(x_1+x_2\right)^2-5x_1x_2\)
\(\Rightarrow P=4m^2+11m+31=4m^2+2\cdot m\cdot\dfrac{11}{2}+\dfrac{121}{4}+\dfrac{3}{4}\) \(=\left(2m+\dfrac{11}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu bằng xảy ra \(\Leftrightarrow2m+\dfrac{11}{2}=0\Leftrightarrow m=-\dfrac{11}{4}\)
Vậy \(P_{Min}=\dfrac{3}{4}\) khi \(m=-\dfrac{11}{4}\)
cho phương trình: \(x^{2}-(m+4)x+m-1=0\).Tìm m để phương trình có hai nghiệm \(x_{1}\),\(x_{2}\)thỏa mãn:\(2x_{1}+3x_{2}=7\)
\(\Delta=\left(m+4\right)^2-4\left(m-1\right)=\left(m+2\right)^2+16>0;\forall m\)
Kết hợp hệ thức Viet và điều kiện đề bài:
\(\left\{{}\begin{matrix}x_1+x_2=m+4\\2x_1+3x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x_1+3x_2=3m+12\\2x_1+3x_2=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=3m+5\\x_2=-2m-1\end{matrix}\right.\)
Mặt khác: \(x_1x_2=m-1\)
\(\Rightarrow\left(3m+5\right)\left(-2m-1\right)=m-1\)
\(\Leftrightarrow6m^2+14m+4=0\Rightarrow\left[{}\begin{matrix}m=-2\\m=-\dfrac{1}{3}\end{matrix}\right.\)
Cho phương trình x2 - 2(k - 2)x - 2k - 5 = 0
Tìm k để phương trình có 2 nghiệm x1, x2 thỏa mãn 2x1 - x2 = 7
PT có 2 nghiệm \(\Leftrightarrow\Delta'=\left(k-2\right)^2-\left(-2k-5\right)\ge0\)
\(\Leftrightarrow k^2-4k+4+2k+10\ge0\\ \Leftrightarrow k^2-2k+14\ge0\\ \Leftrightarrow k\in R\)
Vậy PT luôn có 2 nghiệm
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(k-2\right)\left(1\right)\\x_1x_2=-2k-5\left(2\right)\end{matrix}\right.\)
Lại có \(2x_1-x_2=7\left(3\right)\)
\(\left(1\right)\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(k-2\right)\\2x_1-x_2=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1=2k+3\\x_2=2x_1-7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2k+3}{2}\\x_2=\dfrac{4k+6}{2}-7=\dfrac{4k-8}{2}=2k-4\end{matrix}\right.\)
Thay vào \(\left(2\right)\Leftrightarrow\dfrac{\left(2k+3\right)\left(2k-4\right)}{2}=-2k-5\)
\(\Leftrightarrow\left(2k+3\right)\left(k-2\right)=-2k-5\\ \Leftrightarrow2k^2-k-6+2k+5=0\\ \Leftrightarrow2k^2+k-1=0\\ \Leftrightarrow\left[{}\begin{matrix}k=\dfrac{1}{2}\\k=-1\end{matrix}\right.\)
Cho phương trình x^2 - 2 (m-1) x+m-3=0
1, Giải phương trình với m=-2
2, Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt
3, Tìm m để phương trình có 2 nghiệm trái dấu
4, Tìm m để phương trình có 2 nghiệm dương phân biệt
5, Tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn x12+x22=10
6, Tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn x1+2x2=0