Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiên An
Xem chi tiết
Lê Tấn Sanh
12 tháng 5 2016 lúc 20:31

Đổi biến \(\cos x=y^{20}\). Khi \(x\rightarrow0\) thì \(y\rightarrow0\). Ta có :

\(L=\lim\limits_{y\rightarrow0}\frac{y^5-y^4}{1-y^{40}}=-\lim\limits_{y\rightarrow0}\frac{y^4\left(y-1\right)}{y^{40}-1}\)

    \(=-\lim\limits_{y\rightarrow0}\frac{y-1}{\left(y-1\right)\left(y^{39}+y^{38}+.....+y+1\right)}=-\frac{1}{40}\)

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 21:07

a) \(\sin \left( {x + h} \right) - \sin x = 2\cos \frac{{2x + h}}{2}.\sin \frac{h}{2}\)

b) Với \({x_0}\) bất kì, ta có:

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sin x - \sin {x_0}}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{2\cos \frac{{x + {x_0}}}{2}.\sin \frac{{x - {x_0}}}{2}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sin \frac{{x - {x_0}}}{2}}}{{\frac{{x - {x_0}}}{2}}}.\mathop {\lim }\limits_{x \to {x_0}} \cos \frac{{x + {x_0}}}{2} = \cos {x_0}\end{array}\)

Vậy hàm số y = sin  có đạo hàm là hàm số \(y' = \cos x\)

Sách Giáo Khoa
Xem chi tiết
Nguyễn Đông Tuấn
28 tháng 4 2017 lúc 16:03

Tôi chẳng thể hiểu nổi

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 21:07

a) Ta có \(t = \frac{1}{x},\) nên khi x tiến đến 0 thì t tiến đến dương vô cùng do đó

\(\mathop {\lim }\limits_{x \to 0} {\left( {1 + x} \right)^{\frac{1}{x}}} = \mathop {\lim }\limits_{t \to  + \infty } {\left( {1 + \frac{1}{t}} \right)^t} = e\)

b) \(\ln y = \ln {\left( {1 + x} \right)^{\frac{1}{x}}} = \frac{1}{x}\ln \left( {1 + x} \right)\)

\(\mathop {\lim }\limits_{x \to 0} \ln y = \mathop {\lim }\limits_{x \to 0} \frac{{\ln \left( {1 + x} \right)}}{x} = 1\)

c) \(t = {e^x} - 1 \Leftrightarrow {e^x} = t + 1 \Leftrightarrow x = \ln \left( {t + 1} \right)\)

\(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{x} = \mathop {\lim }\limits_{t \to 0} \frac{t}{{\ln \left( {t + 1} \right)}} = 1\)

Linh Trương
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2023 lúc 20:54

1: \(\lim\limits_{x\rightarrow4}\dfrac{1-x}{\left(x-4\right)^2}=-\infty\) 

vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow4}1-x=1-4=-3< 0\\\lim\limits_{x\rightarrow4}\left(x-4\right)^2=\left(4-4\right)^2=0\end{matrix}\right.\)

2: \(\lim\limits_{x\rightarrow3^+}\dfrac{2x-1}{x-3}=+\infty\)

vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow3^+}2x-1=2\cdot3-1=5>0\\\lim\limits_{x\rightarrow3^+}x-3=3-3>0\end{matrix}\right.\) và x-3>0

3: \(\lim\limits_{x\rightarrow2^+}\dfrac{-2x+1}{x+2}\)

\(=\dfrac{-2\cdot2+1}{2+2}=\dfrac{-3}{4}\)

4: \(\lim\limits_{x\rightarrow1^-}\dfrac{3x-1}{x+1}=\dfrac{3\cdot1-1}{1+1}=\dfrac{2}{2}=1\)

 

2003
Xem chi tiết
Akai Haruma
27 tháng 2 2020 lúc 16:14

Lời giải:

\(\lim\limits_{x\to1}\frac{1+\sin\pi x}{x+1}=\frac{1+\sin\pi}{1+1}=\frac{1}{2}\)

Khách vãng lai đã xóa
Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:22

a) Áp dụng giới hạn một bên thường dùng, ta có : \(\mathop {\lim }\limits_{x \to {4^ + }} \frac{1}{{x - 4}} =  + \infty \)

b) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{x}{{2 - x}} = \mathop {\lim }\limits_{x \to {2^+ }} \frac{{ - x}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - x} \right).\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x - 2}}\)

Ta có: \(\mathop {\lim }\limits_{x \to {2^ + }} \left( { - x} \right) =  - \mathop {\lim }\limits_{x \to {2^ + }} x =  - 2;\mathop {\lim }\limits_{x \to {2^ +}} \frac{1}{{x - 2}} =  +\infty \)

\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} \frac{x}{{2 - x}} =  - \infty \)

Phạm Minh Khánh
Xem chi tiết
Nguyễn Đức Trung
12 tháng 5 2016 lúc 16:27

\(L=\lim\limits_{x\rightarrow0}\frac{e^x-e^{-x}}{\sin x}=\lim\limits_{x\rightarrow0}\frac{e^x-\frac{1}{e^x}}{\sin x}=\lim\limits_{x\rightarrow0}\frac{e^{2x}-1}{e^x\sin x}=\lim\limits_{x\rightarrow0}\frac{e^{2x}-1}{2x.\frac{\sin x}{2x}.e^x}\)

   \(=\lim\limits_{x\rightarrow0}\frac{e^{2x}-1}{2x}.\frac{1}{\frac{\sin x}{x}}.\frac{2}{e^x}=1.\frac{1}{1}.\frac{2}{1}=2\)

Hoàng Anh
Xem chi tiết
Tử Văn Diệp
6 tháng 12 2023 lúc 21:27

loading...  loading...  

lu nguyễn
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 2 2020 lúc 10:01

Tất cả đều ko phải dạng vô định, bạn cứ thay số vào tính thôi:

\(a=\frac{sin\left(\frac{\pi}{4}\right)}{\frac{\pi}{2}}=\frac{\sqrt{2}}{\pi}\)

\(b=\frac{\sqrt[3]{3.4-4}-\sqrt{6-2}}{3}=\frac{0}{3}=0\)

\(c=0.sin\frac{1}{2}=0\)

Khách vãng lai đã xóa