Lời giải:
\(\lim\limits_{x\to1}\frac{1+\sin\pi x}{x+1}=\frac{1+\sin\pi}{1+1}=\frac{1}{2}\)
Lời giải:
\(\lim\limits_{x\to1}\frac{1+\sin\pi x}{x+1}=\frac{1+\sin\pi}{1+1}=\frac{1}{2}\)
Tìm giới hạn:
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[4]{x}-1}{x^3+x-2}\)
Bài 1. Tìm các giới hạn sau:
a) \(\lim\limits\dfrac{-2n+1}{n}\)
b) \(\lim\limits_{x\rightarrow1}\dfrac{3-\sqrt{x+8}}{x-1}\)
Tìm giới hạn của hàm số sau:
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x+7}-3}{x-1}\)
Tính giới hạn
\(\lim\limits_{x\rightarrow1}\frac{2x-1}{\left(x-1\right)^2}\)
Tính các giới hạn
\(\lim\limits_{x\rightarrow1}\dfrac{x^2-\sqrt{x}}{\sqrt{x}-1}\)
Tìm giới hạn của : \(\lim\limits_{x\rightarrow\frac{\pi}{4}}\frac{1-\tan x}{1-\cot x}\)
Tính giới hạn
\(\lim\limits_{x\rightarrow1}\frac{\sqrt[4]{2x-1}+\sqrt[5]{x-2}}{x-1}\)
Tính giới hạn L = \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x-1}.\sqrt[3]{x+7}-2}{x^2-x}\)
Kết quả giới hạn \(\lim\limits_{x\rightarrow1}\dfrac{x^2-3x+2}{x-1}\) bằng:
A. 2
B. 1
C. \(+\infty\)
D. -1