Lời giải:
\(L=\lim\limits_{x\to 1}\frac{\sqrt{2x-1}(\sqrt[3]{x+7}-2)+2(\sqrt{2x-1}-1)}{x(x-1)}=\lim\limits_{x\to 1}\frac{\sqrt{2x-1}.\frac{1}{\sqrt[3]{(x+7)^2}+2\sqrt[3]{x+7}+4}+4.\frac{1}{\sqrt{2x-1}+1}}{x}=\frac{25}{12}\)
Lời giải:
\(L=\lim\limits_{x\to 1}\frac{\sqrt{2x-1}(\sqrt[3]{x+7}-2)+2(\sqrt{2x-1}-1)}{x(x-1)}=\lim\limits_{x\to 1}\frac{\sqrt{2x-1}.\frac{1}{\sqrt[3]{(x+7)^2}+2\sqrt[3]{x+7}+4}+4.\frac{1}{\sqrt{2x-1}+1}}{x}=\frac{25}{12}\)
Tính các giới hạn
\(\lim\limits_{x\rightarrow1}\dfrac{x^2-\sqrt{x}}{\sqrt{x}-1}\)
Tìm giới hạn của hàm số sau:
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x+7}-3}{x-1}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-\sqrt{5-x^2}}{x-1}\)
b, \(\lim\limits_{x\rightarrow5}\dfrac{x-5}{\sqrt{x}-\sqrt{5}}\)
Tìm giới hạn:
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[4]{x}-1}{x^3+x-2}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{5-x}-\sqrt[3]{x^2+7}}{x^2-1}\)
b, \(\lim\limits_{x\rightarrow4}\dfrac{x^2-4x}{x^2+x-20}\)
Tính giới hạn sau:
\(\lim\limits_{x\rightarrow1}\dfrac{\left(x^2+3x+1\right)\sqrt{1+3x}-10}{x^2-1}\)
Kết quả giới hạn \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x+3}-2}{x-1}\) bằng:
A. 0
B. \(\dfrac{1}{2}\)
C. \(\dfrac{1}{4}\)
D. \(\dfrac{1}{3}\)
Bài 1. Tìm các giới hạn sau:
a) \(\lim\limits\dfrac{-2n+1}{n}\)
b) \(\lim\limits_{x\rightarrow1}\dfrac{3-\sqrt{x+8}}{x-1}\)
Tìm giới hạn của hàm số sau:
\(\lim\limits_{x\rightarrow1^+}\left(x-1\right)\sqrt{\dfrac{2x+3}{x^2-1}}\)