\(=\frac{1}{0}=+\infty\)
\(=\frac{1}{0}=+\infty\)
Tính giới hạn sau:
\(\lim\limits_{x\rightarrow1}\dfrac{\left(x^2+3x+1\right)\sqrt{1+3x}-10}{x^2-1}\)
Tìm giới hạn của hàm số sau:
\(\lim\limits_{x\rightarrow1^+}\left(x-1\right)\sqrt{\dfrac{2x+3}{x^2-1}}\)
Tính giới hạn L = \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x-1}.\sqrt[3]{x+7}-2}{x^2-x}\)
\(\lim\limits_{x\rightarrow1}\frac{x-x^2}{\left(2x-1\right)\left(x^5-3\right)}\)
\(\lim\limits_{x\rightarrow0}x\left(1-\frac{1}{x}\right)\)
Tính giới hạn
\(\lim\limits_{x\rightarrow1}\frac{\sqrt[4]{2x-1}+\sqrt[5]{x-2}}{x-1}\)
Tính các giới hạn
\(\lim\limits_{x\rightarrow1}\dfrac{x^2-\sqrt{x}}{\sqrt{x}-1}\)
Bài 1:Cho \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-10}{x-1}=5\) ,\(g\left(x\right)=\sqrt{f\left(x\right)+6}-2\sqrt[3]{f\left(x\right)-2}\)
Tính \(\lim\limits_{x\rightarrow1}\dfrac{1}{\left(\sqrt{x}-1\right)g\left(x\right)}\)
Bài 2: Cho \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2ax^2+30}-bx-5}{x^3-3x+2}=c\left(a;b;c\in R\right)\)
Tính giá trị \(P=a^2+b^2+36c\)
Bài 3: Cho a;b là các số nguyên dương. Biết \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2+ax}+\sqrt[3]{8x^3+2bx^2+3}\right)=\dfrac{7}{3}\)
Tinh P= a+2b
Bài 4:Cho a,b,c thuộc R với a>0 thỏa mãn
\(c^2+a=2\) và \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{ax^2+bx}-cx\right)=-3\)
Tính P= a+b+5c
Bài 5:
Mấy câu này khó nên mong các bạn giúp mình với. Mai mình phải kiểm tra rồi
Tìm giới hạn của hàm số sau:
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x+7}-3}{x-1}\)