Đề bị lỗi công thức rồi bạn. Bạn cần viết lại để được hỗ trợ tốt hơn.
Đề bị lỗi công thức rồi bạn. Bạn cần viết lại để được hỗ trợ tốt hơn.
Tìm giới hạn các dãy số sau
a) \(lim\dfrac{2^n+6^n-4^{n-1}}{3^n+6^{n+1}}\)
b) \(lim\dfrac{1+3+5+...+\left(2n+1\right)}{3n^2+4}\)
c) \(lim\dfrac{1+2+3+...+n}{n^2-3}\)
d) \(lim\left[\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n+1\right)}\right]\)
e) \(lim\left[\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\right]\)
Tìm giới hạn dãy số sau
\(lim\dfrac{\left(2n-1\right)\left(3n^2+2\right)^3}{-2n^5+4n^3-1}\)
\(lim\left(3.2^{n+1}-5.3^n+7n\right)\)
1
a,Lim\(\sqrt{1+2n-n^3}\)
b,Lim\(\sqrt{n^2+2n+3}-\sqrt[3]{n^2+n^3}\)
c,Lim\(\dfrac{\left(2\sqrt{n}+1\right)\left(\sqrt{n}+3\right)}{\left(n+1\right)\left(n+2\right)}\)
d,\(\dfrac{4^{n+1}-3\times2^n}{3^{n+2}+2^n}\)
e,\(\dfrac{7^{n+1}-5^{n+2}+3}{2\times6^{n+1}-3^n+3}\)
f,\(\dfrac{\sqrt{n^4+1}}{n}\) -\(\dfrac{\sqrt{4n^6+1}}{n}\)
Tính các giới hạn sau:
\(a.lim\left(\dfrac{\left(n-1\right)!+n!+3}{\left(n+2\right)!-\left(n-2\right)!}\right)\)
b.\(lim\left(\dfrac{2n+1}{n\cdot3^n}\right)\)
tính giới hạn
1.\(\lim\limits\left(n^3+4n^2-1\right)\)
2.\(lim\dfrac{\left(n+1\right)\sqrt{n^2-n+1}}{3n^2+n}\)
3.\(lim\dfrac{1+2+....+n}{2n^2}\)
4.\(lim\dfrac{3^n-4.2^{n-1}-10}{7.2^n+4^n}\)
tính
a.\(\lim\limits_{n->+\infty}\dfrac{n^5+n^2-n+2}{\left(2n^3-1\right)\left(n^2+n+1\right)}\)
b.\(\lim\limits_{n->+\infty}\dfrac{\sqrt{n^2-n+2}}{n+2}\)
c.\(\lim\limits_{n->+\infty}\dfrac{n-\sqrt[3]{n^2-n^3}}{n^2+n+1}\)
d.\(\lim\limits_{n->+\infty}\left(n-\sqrt{n^2+n+1}\right)\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+3}{3x-1}\)
b) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(\sqrt{x^2+1}+x\right)^n-\left(\sqrt{x^2+1}-x\right)^n}{x}\)
Tính các giới hạn
a) \(lim\dfrac{1+\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{3}\right)^n}{1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^n}\)
\(lim\left(n^3+n\sqrt{n}-5\right)\)
Giúp mình với ạ
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow\infty}\dfrac{a_0x^m+a_1x^{m-1}+a_2x^{m-2}+...+a_m}{b_0x^n+b_1x^{n-1}+b_2x^{n-2}+...+b_n}\)
b) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(x-\sqrt{x^2-1}\right)^n+\left(x+\sqrt{x^2-1}\right)^n}{x^n}\)