Tính giá trị của biểu thức sau:
cos2 1o + cos2 2o + cos2 3o +...+ cos2 89o -\(\frac{1}{2}\)
Bài 4. a) Tính giá trị biểu thức:
A = cos2 20° + cos2 40° + cos2 50° + cos2 70°.
b) Rút gọn biểu thức:
B = sin6 a + cos6 a + 3 sin2 a. cos2 a
\(a,A=\left(\cos^220^0+\cos^270^0\right)+\left(\cos^240^0+\cos^250^0\right)\\ A=\left(\cos^220^0+\sin^220^0\right)+\left(\cos^240^0+\sin^240^0\right)=1+1=2\\ b,B=\left(\cos^2\alpha\right)^3+\left(\sin^2\alpha\right)^3+3\sin^2\alpha\cdot\cos^2\alpha\cdot\left(\sin^2\alpha+\cos^2\alpha\right)\\ B=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)
Cho cot a = 2. Tính giá trị của biểu thức P = sin 4 a + cos 4 x sin 2 a + cos 2 x . Giá trị của P là
A. P = - 17 25
B. P = - 27 15
C. P = - 17 15
D. P = 17 15
Bài 1: Biết sinα = \(\dfrac{\sqrt{3}}{2}\). Hãy tính cosα, tanα, cotα.
Bài 2: Biết tanα = 2. Hãy tính sinα, cotα, cosα
Bài 3: Tính: A= cos2 20o + cos2 40o + cos2 50o + cos2 70o
Bài 3:
Ta có: \(A=\cos^220^0+\cos^240^0+\cos^250^0+\cos^270^0\)
\(=\left(\sin^270^0+\cos^270^0\right)+\left(\sin^250^0+\cos^250^0\right)\)
=1+1
=2
bài 2 Tisnhg ía trị biểu thức:
a) sin230 độ - sin240 độ - sin250 độ + sin2 60 độ
b) cos225 độ - cos235độ + cos245 độ -cos2 55 độ + cos2 65 độ
a) sin230 độ - sin240 độ - sin250 độ + sin2 60 độ
= cos260o - cos250o - sin250o + sin260o
= (cos260o + sin260o) - (cos250o + sin250o)
= 1 - 1 = 0
b) cos225 độ - cos235độ + cos245 độ -cos2 55 độ + cos2 65 độ
= sin265o - sin255o + cos245o - cos255o + cos265o
= (sin265o + cos265o) - (sin255o + cos255o) + cos245o
= 1 - 1 +1/2
= 1/2
Bài 3: Tính:
a. 2sin30o - 2cos60o + tan45o
b. cos2 20o + cos2 40o + cos2 50o + cos2 70o
a, \(2sin30^o-2cos60^o+tan45^o\)
\(=2cos60^o-2cos60^o+tan45^o\)
\(=tan45^o\)
\(=1\)
b, \(cos^220^o+cos^240^o+cos^250^o+cos^270^o\)
\(=cos^220^o+cos^240^o+sin^240^o+sin^220^o\)
\(=cos^220^o+sin^220^o+cos^240^o+sin^240^o\)
\(=1+1=2\)
Biểu thức A = cos2x + cos2(\(\dfrac{\pi}{3}\)+x) +cos2(\(\dfrac{\pi}{3}\)-x) không phụ thuộc vào x và bằng :
\(A=cos^2x+\dfrac{1+cos\left(\dfrac{2\pi}{3}+2x\right)}{2}+\dfrac{1+cos\left(\dfrac{2\pi}{3}-2x\right)}{2}\\ =cos^2x+1+\dfrac{cos\left(\dfrac{2\pi}{3}+2x\right)+cos\left(\dfrac{2\pi}{3}-2x\right)}{2}\\ =cos^2x+1+cos\left(\dfrac{2\pi}{3}\right).cos2x\\ =cos^2x+1-\dfrac{1}{2}.cos2x=\dfrac{1+cos2x}{2}+1-\dfrac{cos2x}{2}=\dfrac{3}{2}.\)
A= cos2 10° + cos2 20° + cos2 70° + cos2 80° ( giải chi tiết giúp mình với )
\(A=\cos^210^0+\cos^220^0+\sin^220^0+\sin^210^0\\ A=1+1=2\)
Chứng minh các đẳng thức sau:
1/ \(sin^6\alpha+cos^6\alpha=\frac{5}{8}+\frac{3}{8}cos4\alpha\)
2/\(\frac{1+sin2\alpha-cos2\alpha}{1+cos2\alpha}=tan\alpha+tan^2\alpha\)
\(sin^6a+cos^6a=\left(sin^2x\right)^3+\left(cos^2x\right)^3\)
\(=\left(sin^2x+cos^2x\right)\left(sin^4x+cos^4x-sin^2x.cos^2x\right)\)
\(=sin^4x+2sin^2xcos^2x+cos^4x-3sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-\frac{3}{4}.\left(2sinx.cosx\right)^2\)
\(=1-\frac{3}{4}sin^22x=1-\frac{3}{4}\left(\frac{1}{2}-\frac{1}{2}cos4x\right)=\frac{5}{8}+\frac{3}{8}cos4x\)
2/
\(\frac{1+sin2a-cos2a}{1+cos2a}=\frac{1+2sina.cosa-\left(1-2sin^2a\right)}{1+2cos^2a-1}=\frac{2sina.cosa+2sin^2a}{2cos^2a}\)
\(=\frac{2sina.cosa}{2cos^2a}+\frac{2sin^2a}{2cos^2a}=tana+tan^2a\)
CMR: α<45* ta có công thức:
a/ \(sin^2\alpha=\frac{1-cos2\text{α}}{2}\)
b/ \(cos^2\text{α}=\frac{1+cos2\text{α}}{2}\)
c/ \(cos2\text{α}=cos^2\text{α}-sin^2\text{α}\)
tính giá trị biểu thức:
a) A = cos2 52' sin 452 +sin252' cos 45'
b) B = sin45 cos247+ sin247 cos45
a: \(=\dfrac{\sqrt{2}}{2}\left(cos^252^0+sin^252^0\right)=\dfrac{\sqrt{2}}{2}\)
b: \(=\dfrac{\sqrt{2}}{2}\left(cos^247^0+sin^247^0\right)=\dfrac{\sqrt{2}}{2}\)