Tìm giá trị lớn nhất của biểu thức \(A=\sqrt{x-1}+\sqrt{y-2}\) với x + y = 4
Cho các số thực dương x,y thuộc (0;1). Tìm giá trị lớn nhất của biểu thức: \(P=\sqrt{x}+\sqrt{y}+\sqrt[4]{12}\sqrt{x.\sqrt{1-y^2}+y\sqrt{1-x^2}}\)
Đặt \(\left\{{}\begin{matrix}x=sina\\y=sinb\end{matrix}\right.\) với \(a;b\in\left(0;\dfrac{\pi}{2}\right)\)
\(P=\sqrt{sina}+\sqrt{sinb}+\sqrt[4]{12}.\sqrt{sina.cosb+cosa.sinb}\)
\(P\le\sqrt{2\left(sina+sinb\right)}+\sqrt[4]{12}.\sqrt{sin\left(a+b\right)}\)
Do \(sina+sinb=2sin\dfrac{a+b}{2}cos\dfrac{a-b}{2}\le2sin\dfrac{a+b}{2}\)
\(\Rightarrow P\le2\sqrt{sin\dfrac{a+b}{2}}+\sqrt[4]{12}.\sqrt{sin\left(a+b\right)}=2\sqrt{sint}+\sqrt[4]{12}.\sqrt{sin2t}\)
\(\Rightarrow\dfrac{P}{\sqrt{2}}\le\sqrt{2sint}+\sqrt{\sqrt{3}.sin2t}\Rightarrow\dfrac{P^2}{4}\le2sint+\sqrt{3}sin2t\)
\(\Rightarrow\dfrac{P^2}{8}\le sint\left(1+\sqrt{3}cost\right)\Rightarrow\dfrac{P^4}{64}\le sin^2t\left(1+\sqrt{3}cost\right)^2\le2sin^2t\left(1+3cos^2t\right)\)
\(\Leftrightarrow\dfrac{P^4}{128}\le sin^2t\left(4-3sin^2t\right)=-3sin^4t+4sin^2t\)
\(\Leftrightarrow\dfrac{P^4}{128}\le-3\left(sin^2t-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\le\dfrac{4}{3}\)
\(\Rightarrow P\le4.\sqrt[4]{\dfrac{2}{3}}\)
Dấu "=" xảy ra khi và chỉ khi \(sint=\sqrt{\dfrac{2}{3}}\)
Tìm giá trị nhỏ nhất của biểu thức sau \(A=x\sqrt{y+1}+y\sqrt{x+1}\), với \(x^2+y^2=1\)
Áp dụng BĐT BSC và BĐT \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\):
\(A=x\sqrt{y+1}+y\sqrt{x+1}\)
\(\Rightarrow A^2=\left(x\sqrt{y+1}+y\sqrt{x+1}\right)^2\)
\(\le\left(x^2+y^2\right)\left(x+y+2\right)\)
\(\le\left(x^2+y^2\right)\left[\sqrt{2\left(x^2+y^2\right)}+2\right]=\sqrt{2}+2\)
\(\Rightarrow-\sqrt{\sqrt{2}+2}\le A\le\sqrt{\sqrt{2}+2}\)
\(\Rightarrow minA=\sqrt{\sqrt{2}+2}\Leftrightarrow x=y=-\dfrac{1}{\sqrt{2}}\)
Với các số thực x, y thỏa mãn:\(x-\sqrt{x+6}=\sqrt{y+6}-y\). Tìm giá trị lớn nhất(nếu có) của biểu thức A=x+y
Lời giải:
ĐKĐB $\Leftrightarrow x+y=\sqrt{x+6}+\sqrt{y+6}$
$\Rightarrow (x+y)^2=(\sqrt{x+6}+\sqrt{y+6})^2\leq (x+6+y+6)(1+1)$ (theo BĐT Bunhiacopxky)
$\Leftrightarrow (x+y)^2\leq 2(x+y+12)$
$\Leftrightarrow (x+y)^2-2(x+y)-24\leq 0$
$\Leftrightarrow (x+y+4)(x+y-6)\leq 0$
$\Leftrightarrow -4\leq x+y\leq 6$
Vậy $A_{\max}=6$
Bài 1:
Cho số thực x. Với \(x\ge1\).Tìm giá trị nhỏ nhất của biểu thức
\(A=\sqrt{x-2\sqrt{x-1}}+5.\sqrt{x+3-4.\sqrt{x-1}}+\sqrt{x+8-6.\sqrt{x-1}}\)
Bài 2:
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức:
\(y=\frac{x^2}{x^2-5x+7}\)
Bài 3:
Cho hai số dương x,y thay đổi nhưng luôn thỏa mãn điều kiện \(\frac{2}{x}+\frac{3}{y}=6\)
Tìm giá trị nhỏ nhất của x+y
Bài 3:
Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)
True?
Bài 2: Thực sự không chắc lắm về cách này
\(y=\frac{x^2}{x^2-5x+7}\Rightarrow x^2\left(y-1\right)-5yx+7y=0\)
Coi pt trên là pt bậc 2 ẩn x, dùng điều kiện có nghiệm của pt bậc 2 ta có \(\Delta=25y^2-28y\left(y-1\right)=28y-3y^2\ge0\Leftrightarrow28y\ge3y^2\)
Xét y âm, chia 2 vế của bất đẳng thức cho y âm ta được \(y\ge\frac{28}{3}\)không thỏa
Xét y dương ta thu được \(y\le\frac{28}{3}\), cái này thì em không không biết có nghiệm x không nhờ mọi người kiểm tra dùm
Vậy Maxy=28/3 còn Miny=0 (cái min thì dễ hà )
cho 2 số thực x,y thỏa mãn điều kiên \(x+y+25=8\left(\sqrt{x-1}+\sqrt{y-5}\right)\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: \(P=\sqrt{\left(x-1\right)\left(y-5\right)}\)
cho x,y,z là số dương thỏa mãn x+y+z ≤3 tìm giá trị lớn nhất của biểu thức
P=\(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
Ta có:
\(1.\sqrt{1+x^2}+1.\sqrt{2x}\le\sqrt{\left(1+1\right)\left(1+x^2+2x\right)}=\sqrt{2}\left(x+1\right)\)
Tương tự:
\(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\) ; \(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)
Cộng vế:
\(P\le\sqrt{2}\left(x+y+z+3\right)+\left(2-\sqrt{2}\right)\left(x+y+z\right)\le\sqrt{2}\left(3+3\right)+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)
\(P_{max}=6+3\sqrt{2}\) khi \(x=y=z=1\)
tìm giá trị lớn nhất của biểu thức M = \(\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
\(M=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\)
ta co \(1.\sqrt{x-1}\le\frac{x+1-1}{2}=\frac{x}{2}\)
\(2.\sqrt{y-4}=\sqrt{4}\sqrt{y-4}\le\frac{y-4+4}{2}=\frac{y}{2}\)
\(M=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{4}\sqrt{y-4}}{2y}\le\frac{\frac{x}{2}}{x}+\frac{\frac{y}{2}}{2y}=\frac{x}{2x}+\frac{y}{4y}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
vay max \(M=\frac{3}{4}\)khi \(\hept{\begin{cases}x=2\\y=8\end{cases}}\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=\(\sqrt{4\sqrt{x}-x}\) với các giá trị của x thỏa mãn biểu thức A xác định.
Ta có:
\(A=\sqrt{4\sqrt{x}-x}\) (ĐK: \(16\ge x\ge0\))
Mà: \(\sqrt{4\sqrt{x}-x}\ge0\forall x\)
Dấu "=" xảy ra:
\(4\sqrt{x}-x=0\)
\(\Leftrightarrow4\sqrt{x}-\left(\sqrt{x}\right)^2=0\)
\(\Leftrightarrow\sqrt{x}\left(4-\sqrt{x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\4-\sqrt{x}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
Vậy: \(A_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
Tìm giá trị lớn nhất, giá trị lớn nhất của hàm số (nếu có)
a, \(y=\sqrt{x^2+x-2}\)
b, \(y=\sqrt{2+x}+\sqrt{4-x}\)
c, \(y=x+\sqrt{4-x^2}\)
Lời giải:
a. $y=\sqrt{x^2+x-2}\geq 0$ (tính chất cbh số học)
Vậy $y_{\min}=0$. Giá trị này đạt tại $x^2+x-2=0\Leftrightarrow x=1$ hoặc $x=-2$
b.
$y^2=6+2\sqrt{(2+x)(4-x)}\geq 6$ do $2\sqrt{(2+x)(4-x)}\geq 0$ theo tính chất căn bậc hai số học
$\Rightarrow y\geq \sqrt{6}$ (do $y$ không âm)
Vậy $y_{\min}=\sqrt{6}$ khi $x=-2$ hoặc $x=4$
$y^2=(\sqrt{2+x}+\sqrt{4-x})^2\leq (2+x+4-x)(1+1)=12$ theo BĐT Bunhiacopxky
$\Rightarrow y\leq \sqrt{12}=2\sqrt{3}$
Vậy $y_{\max}=2\sqrt{3}$ khi $2+x=4-x\Leftrightarrow x=1$
c. ĐKXĐ: $-2\leq x\leq 2$
$y^2=(x+\sqrt{4-x^2})^2\leq (x^2+4-x^2)(1+1)$ theo BĐT Bunhiacopxky
$\Leftrightarrow y^2\leq 8$
$\Leftrightarrow y\leq 2\sqrt{2}$
Vậy $y_{\max}=2\sqrt{2}$ khi $x=\sqrt{2}$
Mặt khác:
$x\geq -2$
$\sqrt{4-x^2}\geq 0$
$\Rightarrow y\geq -2$
Vậy $y_{\min}=-2$ khi $x=-2$
Tìm giá trị lớn nhất của các biểu thức sau:
a) y=\(\sqrt{-x^2+2\text{x}+2}\)
b) y=\(2-\sqrt{4\text{x}^2-4\text{x}+1}\)
Toán này lớp 8 đúng không ta
\(\sqrt{-x^2+2x+2}=\sqrt{3-\left(x^2-2x+1\right)}\)
= \(\sqrt{3-\left(x-1\right)^2}\le\sqrt{3}\)
Đạt được khi x = 1
Câu còn lại làm tương tự